@article{SIGMA_2017_13_a75,
author = {Simon Lentner and Tobias Ohrmann},
title = {Factorizable $R${-Matrices} for {Small} {Quantum} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/}
}
Simon Lentner; Tobias Ohrmann. Factorizable $R$-Matrices for Small Quantum Groups. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/
[1] Angiono I., Yamane H., “The $R$-matrix of quantum doubles of Nichols algebras of diagonal type”, J. Math. Phys., 56 (2015), 021702, 19 pp., arXiv: 1304.5752 | DOI | MR | Zbl
[2] Bruguières A., “Catégories prémodulaires, modularisations et invariants des variétés de dimension 3”, Math. Ann., 316 (2000), 215–236 | DOI | MR | Zbl
[3] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[4] Feigin B. L., Gainutdinov A. M., Semikhatov A. M., Tipunin I. Yu., “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl
[5] Feigin B. L., Tipunin I. Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv: 1002.5047
[6] Gainutdinov A. M., Runkel I., “Symplectic fermions and a quasi-Hopf algebra structure on $\overline{U}_{q}s\ell(2)$”, J. Algebra, 476 (2017), 415–458, arXiv: 1503.07695 | DOI | MR | Zbl
[7] Kerler T., Lyubashenko V. V., Non-semisimple topological quantum field theories for 3-manifolds with corners, Lecture Notes in Mathematics, 1765, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[8] Kondo H., Saito Y., “Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${\mathfrak{sl}}_2$”, J. Algebra, 330 (2011), 103–129, arXiv: 0901.4221 | DOI | MR | Zbl
[9] Lentner S., “A Frobenius homomorphism for Lusztig's quantum groups for arbitrary roots of unity”, Commun. Contemp. Math., 18 (2016), 1550040, 42 pp., arXiv: 1406.0865 | DOI | MR | Zbl
[10] Lentner S., Nett D., A theorem of roots of unity and a combinatorial principle, arXiv: 1409.5822
[11] Lentner S., Nett D., “New $R$-matrices for small quantum groups”, Algebr. Represent. Theory, 18 (2015), 1649–1673, arXiv: 1409.5824 | DOI | MR | Zbl
[12] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35 (1990), 89–113 | DOI | MR
[13] Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010 | DOI | MR | Zbl
[14] Müller E., Quantengruppen im Einheitswurzelfall, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 1998
[15] Müller E., “Some topics on Frobenius–Lusztig kernels. I”, J. Algebra, 206 (1998), 624–658 | DOI | MR | Zbl
[16] Müller E., “Some topics on Frobenius–Lusztig kernels. II”, J. Algebra, 206 (1998), 659–681 | DOI | MR | Zbl
[17] Schneider H.-J., “Some properties of factorizable Hopf algebras”, Proc. Amer. Math. Soc., 129 (2001), 1891–1898 | DOI | MR | Zbl
[18] Shimizu K., Non-degeneracy conditions for braided finite tensor categories, arXiv: 1602.06534
[19] Turaev V. G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl