Factorizable $R$-Matrices for Small Quantum Groups
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Representations of small quantum groups $u_q({\mathfrak{g}})$ at a root of unity and their extensions provide interesting tensor categories, that appear in different areas of algebra and mathematical physics. There is an ansatz by Lusztig to endow these categories with the structure of a braided tensor category. In this article we determine all solutions to this ansatz that lead to a non-degenerate braiding. Particularly interesting are cases where the order of $q$ has common divisors with root lengths. In this way we produce familiar and unfamiliar series of (non-semisimple) modular tensor categories. In the degenerate cases we determine the group of so-called transparent objects for further use.
Keywords: factorizable; $R$-matrix; quantum group; modular tensor category; transparent object.
@article{SIGMA_2017_13_a75,
     author = {Simon Lentner and Tobias Ohrmann},
     title = {Factorizable $R${-Matrices} for {Small} {Quantum} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/}
}
TY  - JOUR
AU  - Simon Lentner
AU  - Tobias Ohrmann
TI  - Factorizable $R$-Matrices for Small Quantum Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/
LA  - en
ID  - SIGMA_2017_13_a75
ER  - 
%0 Journal Article
%A Simon Lentner
%A Tobias Ohrmann
%T Factorizable $R$-Matrices for Small Quantum Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/
%G en
%F SIGMA_2017_13_a75
Simon Lentner; Tobias Ohrmann. Factorizable $R$-Matrices for Small Quantum Groups. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a75/

[1] Angiono I., Yamane H., “The $R$-matrix of quantum doubles of Nichols algebras of diagonal type”, J. Math. Phys., 56 (2015), 021702, 19 pp., arXiv: 1304.5752 | DOI | MR | Zbl

[2] Bruguières A., “Catégories prémodulaires, modularisations et invariants des variétés de dimension 3”, Math. Ann., 316 (2000), 215–236 | DOI | MR | Zbl

[3] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[4] Feigin B. L., Gainutdinov A. M., Semikhatov A. M., Tipunin I. Yu., “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl

[5] Feigin B. L., Tipunin I. Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv: 1002.5047

[6] Gainutdinov A. M., Runkel I., “Symplectic fermions and a quasi-Hopf algebra structure on $\overline{U}_{q}s\ell(2)$”, J. Algebra, 476 (2017), 415–458, arXiv: 1503.07695 | DOI | MR | Zbl

[7] Kerler T., Lyubashenko V. V., Non-semisimple topological quantum field theories for 3-manifolds with corners, Lecture Notes in Mathematics, 1765, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[8] Kondo H., Saito Y., “Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${\mathfrak{sl}}_2$”, J. Algebra, 330 (2011), 103–129, arXiv: 0901.4221 | DOI | MR | Zbl

[9] Lentner S., “A Frobenius homomorphism for Lusztig's quantum groups for arbitrary roots of unity”, Commun. Contemp. Math., 18 (2016), 1550040, 42 pp., arXiv: 1406.0865 | DOI | MR | Zbl

[10] Lentner S., Nett D., A theorem of roots of unity and a combinatorial principle, arXiv: 1409.5822

[11] Lentner S., Nett D., “New $R$-matrices for small quantum groups”, Algebr. Represent. Theory, 18 (2015), 1649–1673, arXiv: 1409.5824 | DOI | MR | Zbl

[12] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35 (1990), 89–113 | DOI | MR

[13] Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010 | DOI | MR | Zbl

[14] Müller E., Quantengruppen im Einheitswurzelfall, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 1998

[15] Müller E., “Some topics on Frobenius–Lusztig kernels. I”, J. Algebra, 206 (1998), 624–658 | DOI | MR | Zbl

[16] Müller E., “Some topics on Frobenius–Lusztig kernels. II”, J. Algebra, 206 (1998), 659–681 | DOI | MR | Zbl

[17] Schneider H.-J., “Some properties of factorizable Hopf algebras”, Proc. Amer. Math. Soc., 129 (2001), 1891–1898 | DOI | MR | Zbl

[18] Shimizu K., Non-degeneracy conditions for braided finite tensor categories, arXiv: 1602.06534

[19] Turaev V. G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl