@article{SIGMA_2017_13_a74,
author = {Slawomir Klimek and Matt McBride and Sumedha Rathnayake and Kaoru Sakai and Honglin Wang},
title = {Derivations and {Spectral} {Triples} on {Quantum} {Domains} {I:} {Quantum} {Disk}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a74/}
}
TY - JOUR AU - Slawomir Klimek AU - Matt McBride AU - Sumedha Rathnayake AU - Kaoru Sakai AU - Honglin Wang TI - Derivations and Spectral Triples on Quantum Domains I: Quantum Disk JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a74/ LA - en ID - SIGMA_2017_13_a74 ER -
%0 Journal Article %A Slawomir Klimek %A Matt McBride %A Sumedha Rathnayake %A Kaoru Sakai %A Honglin Wang %T Derivations and Spectral Triples on Quantum Domains I: Quantum Disk %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a74/ %G en %F SIGMA_2017_13_a74
Slawomir Klimek; Matt McBride; Sumedha Rathnayake; Kaoru Sakai; Honglin Wang. Derivations and Spectral Triples on Quantum Domains I: Quantum Disk. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a74/
[1] Barría J., Halmos P. R., “Asymptotic Toeplitz operators”, Trans. Amer. Math. Soc., 273 (1982), 621–630 | DOI | MR | Zbl
[2] Battisti U., Seiler J., “Boundary value problems with Atiyah–Patodi–Singer type conditions and spectral triples”, J. Noncommut. Geom. (to appear) , arXiv: 1503.02897 | MR
[3] Booß-Bavnbek B., Wojciechowski K. P., Elliptic boundary problems for Dirac operators, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR | Zbl
[4] Bratteli O., Derivations, dissipations and group actions on $C^*$-algebras, Lecture Notes in Math., 1229, Springer-Verlag, Berlin, 1986 | DOI | MR
[5] Bratteli O., Elliott G. A., Jorgensen P. E. T., “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 346 (1984), 166–193 | DOI | MR | Zbl
[6] Brown A., Halmos P. R., Shields A. L., “Cesàro operators”, Acta Sci. Math. (Szeged), 26 (1965), 125–137 | MR | Zbl
[7] Carey A. L., Klimek S., Wojciechowski K. P., “A Dirac type operator on the non-commutative disk”, Lett. Math. Phys., 93 (2010), 107–125 | DOI | MR | Zbl
[8] Coburn L. A., “The $C^{\ast} $-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl
[9] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[10] Connes A., “Cyclic cohomology, quantum group symmetries and the local index formula for ${\rm SU}_q(2)$”, J. Inst. Math. Jussieu, 3 (2004), 17–68, arXiv: math.QA/0209142 | DOI | MR | Zbl
[11] D'Andrea F., Da̧browski L., “Local index formula on the equatorial Podleś sphere”, Lett. Math. Phys., 75 (2006), 235–254, arXiv: math.QA/0507337 | DOI | MR | Zbl
[12] Forsyth I., Goffeng M., Mesland B., Rennie A., Boundaries, spectral triples and $K$-homology, arXiv: 1607.07143
[13] Hadfield T., “The noncommutative geometry of the discrete Heisenberg group”, Houston J. Math., 29 (2003), 453–481 | MR | Zbl
[14] Jorgensen P., “Approximately inner derivations, decompositions and vector fields of simple $C^*$-algebras”, Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., 84, Birkhäuser Boston, Boston, MA, 1990, 15–113 | DOI | MR
[15] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press, Inc., Orlando, FL, 1986 | MR | Zbl
[16] Klimek S., Lesniewski A., “Quantum Riemann surfaces. I. The unit disc”, Comm. Math. Phys., 146 (1992), 103–122 | DOI | MR | Zbl
[17] Klimek S., McBride M., “D-bar operators on quantum domains”, Math. Phys. Anal. Geom., 13 (2010), 357–390, arXiv: 1001.2216 | DOI | MR | Zbl
[18] Klimek S., McBride M., Rathnayake S., Derivations and spectral triples on quantum domains II: Quantum annulus, in preparation
[19] Sakai S., Operator algebras in dynamical systems, Encyclopedia of Mathematics and its Applications, 41, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl
[20] Schechter M., “Basic theory of Fredholm operators”, Ann. Scuola Norm. Sup. Pisa, 21 (1967), 261–280 | MR | Zbl
[21] Stacey P. J., “Crossed products of $C^\ast$-algebras by $\ast$-endomorphisms”, J. Austral. Math. Soc. Ser. A, 54 (1993), 204–212 | DOI | MR | Zbl