@article{SIGMA_2017_13_a71,
author = {Indranil Biswas and Sebastian Heller},
title = {On the {Automorphisms} of a {Rank} {One} {Deligne{\textendash}Hitchin} {Moduli} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a71/}
}
Indranil Biswas; Sebastian Heller. On the Automorphisms of a Rank One Deligne–Hitchin Moduli Space. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a71/
[1] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[2] Baraglia D., “Classification of the automorphism and isometry groups of Higgs bundle moduli spaces”, Proc. Lond. Math. Soc., 112 (2016), 827–854, arXiv: 1411.2228 | DOI | MR | Zbl
[3] Baraglia D., Biswas I., Schaposnik L. P., “Automorphisms of $\mathbb{C}^*$ moduli spaces associated to a Riemann surface”, SIGMA, 12 (2016), 007, 14 pp., arXiv: 1508.06587 | DOI | MR | Zbl
[4] Corlette K., “Flat $G$-bundles with canonical metrics”, J. Differential Geom., 28 (1988), 361–382 | DOI | MR | Zbl
[5] Donaldson S. K., “Twisted harmonic maps and the self-duality equations”, Proc. London Math. Soc., 55 (1987), 127–131 | DOI | MR | Zbl
[6] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl
[7] Goldman W. M., Xia E. Z., Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces, Mem. Amer. Math. Soc., 193, 2008, viii+69 pp., arXiv: math.DG/0402429 | DOI | MR
[8] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[9] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyperkähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl
[10] Simpson C., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl
[11] Simpson C., “The Hodge filtration on nonabelian cohomology”, Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 217–281, arXiv: alg-geom/9604005 | DOI | MR | Zbl
[12] Simpson C., “A weight two phenomenon for the moduli of rank one local systems on open varieties”, From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 175–214, arXiv: 0710.2800 | DOI | MR | Zbl
[13] Verbitsky M., “Holography principle for twistor spaces”, Pure Appl. Math. Q, 10 (2014), 325–354, arXiv: 1211.5765 | DOI | MR | Zbl
[14] Weil A., “Zum Beweis des Torellischen Satzes”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1957, 1957, 33–53 | MR