@article{SIGMA_2017_13_a7,
author = {Maciej B{\l}aszak and Krzysztof Marciniak},
title = {Classical and {Quantum} {Superintegrability} of {St\"ackel} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a7/}
}
Maciej Błaszak; Krzysztof Marciniak. Classical and Quantum Superintegrability of Stäckel Systems. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a7/
[1] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., “Superintegrable anharmonic oscillators on $N$-dimensional curved spaces”, J. Nonlinear Math. Phys., 15:3 (2008), 43–52, arXiv: 0710.0843 | DOI | MR
[2] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “A maximally superintegrable deformation of the $N$-dimensional quantum Kepler–Coulomb system”, J. Phys. Conf. Ser., 474 (2013), 012008, 9 pp., arXiv: 1310.6554 | DOI
[3] Ballesteros Á., Herranz F. J., Santander M., Sanz-Gil T., “Maximal superintegrability on $N$-dimensional curved spaces”, J. Phys. A: Math. Gen., 36 (2003), L93–L99, arXiv: math-ph/0211012 | DOI | MR | Zbl
[4] Błaszak M., Marciniak K., “On reciprocal equivalence of Stäckel systems”, Stud. Appl. Math., 129 (2012), 26–50, arXiv: 1201.0446 | DOI | MR
[5] Błaszak M., Marciniak K., Domański Z., “Separable quantizations of Stäckel systems”, Ann. Physics, 371 (2016), 460–477, arXiv: 1501.00576 | DOI | MR
[6] Błaszak M., Sergyeyev A., “Maximal superintegrability of Benenti systems”, J. Phys. A: Math. Gen., 38 (2005), L1–L5, arXiv: nlin.SI/0412018 | DOI | MR
[7] Błaszak M., Sergyeyev A., “Natural coordinates for a class of Benenti systems”, Phys. Lett. A, 365 (2007), 28–33, arXiv: nlin.SI/0604022 | DOI | MR
[8] Błaszak M., Sergyeyev A., “Generalized Stäckel systems”, Phys. Lett. A, 375 (2011), 2617–2623 | DOI | MR
[9] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “Stäckel-equivalent integrable Hamiltonian systems”, SIAM J. Math. Anal., 17 (1986), 778–797 | DOI | MR | Zbl
[10] Crampin M., Sarlet W., “A class of nonconservative Lagrangian systems on Riemannian manifolds”, J. Math. Phys., 42 (2001), 4313–4326 | DOI | MR | Zbl
[11] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl
[12] Gonera C., “Isochronic potentials and new family of superintegrable systems”, J. Phys. A: Math. Gen., 37 (2004), 4085–4095 | DOI | MR | Zbl
[13] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI | MR
[14] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[15] Kalnins E. G., Kress J. M., Miller W. (Jr.), Pogosyan G. S., “Nondegenerate superintegrable systems in $n$-dimensional Euclidean spaces”, Phys. Atomic Nuclei, 70 (2007), 545–553 | DOI
[16] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. (Jr.), “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[17] Kalnins E. G., Miller W., Post S., “Models for quadratic algebras associated with second order superintegrable systems in 2D”, SIGMA, 4 (2008), 008, 21 pp., arXiv: 0801.2848 | DOI | Zbl
[18] Marciniak K., Błaszak M., “Flat coordinates of flat Stäckel systems”, Appl. Math. Comput., 268 (2015), 706–716, arXiv: 1406.2117 | DOI | MR
[19] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[20] Schouten J. A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Grundlehren der Mathematischen Wissenschaften, 10, 2nd ed., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954 | DOI | MR
[21] Sergyeyev A., “Exact solvability of superintegrable Benenti systems”, J. Math. Phys., 48 (2007), 052114, 11 pp., arXiv: nlin.SI/0701015 | DOI | MR | Zbl
[22] Sergyeyev A., Błaszak M., “Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems”, J. Phys. A: Math. Theor., 41 (2008), 105205, 20 pp., arXiv: 0706.1473 | DOI | Zbl
[23] Sklyanin E. K., Progr. Theoret. Phys. Suppl., 1995, Separation of variables — new trends, arXiv: solv-int/9504001 | DOI | MR
[24] Stäckel P., Über die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle, 1891