Restriction of Odd Degree Characters of $\mathfrak{S}_n$
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $n$ and $k$ be natural numbers such that $2^k n$. We study the restriction to $\mathfrak{S}_{n-2^k}$ of odd-degree irreducible characters of the symmetric group $\mathfrak{S}_n$. This analysis completes the study begun in [Ayyer A., Prasad A., Spallone S., Sém. Lothar. Combin. 75 (2015), Art. B75g, 13 pages] and recently developed in [Isaacs I.M., Navarro G., Olsson J.B., Tiep P.H., J. Algebra 478 (2017), 271–282].
Keywords: characters of symmetric groups; hooks in partitions.
@article{SIGMA_2017_13_a69,
     author = {Christine Bessenrodt and Eugenio Giannelli and J{\o}rn B. Olsson},
     title = {Restriction of {Odd} {Degree} {Characters} of $\mathfrak{S}_n$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a69/}
}
TY  - JOUR
AU  - Christine Bessenrodt
AU  - Eugenio Giannelli
AU  - Jørn B. Olsson
TI  - Restriction of Odd Degree Characters of $\mathfrak{S}_n$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a69/
LA  - en
ID  - SIGMA_2017_13_a69
ER  - 
%0 Journal Article
%A Christine Bessenrodt
%A Eugenio Giannelli
%A Jørn B. Olsson
%T Restriction of Odd Degree Characters of $\mathfrak{S}_n$
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a69/
%G en
%F SIGMA_2017_13_a69
Christine Bessenrodt; Eugenio Giannelli; Jørn B. Olsson. Restriction of Odd Degree Characters of $\mathfrak{S}_n$. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a69/

[1] Ayyer A., Prasad A., Spallone S., “Odd partitions in Young's lattice”, Sém. Lothar. Combin., 75 (2015), B75g, 13 pp., arXiv: 1601.01776 | MR

[2] Giannelli E., Kleshchev A., Navarro G., Tiep P. H., “Restriction of odd degree characters and natural correspondences”, Int. Math. Res. Not. (to appear) , arXiv: 1601.04423 | DOI

[3] Isaacs I. M., Navarro G., Olsson J. B., Tiep P. H., “Character restrictions and multiplicities in symmetric groups”, J. Algebra, 478 (2017), 271–282 | DOI | MR | Zbl

[4] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR | Zbl

[5] Macdonald I. G., “On the degrees of the irreducible representations of symmetric groups”, Bull. London Math. Soc., 3 (1971), 189–192 | DOI | MR | Zbl

[6] Olsson J. B., Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Heft 20, 1994 http://www.math.ku.dk/õlsson/manus/comb_rep_all.pdf | MR