An Elliptic Garnier System from Interpolation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
Keywords: elliptic difference; isomonodromic systems; Lax form; interpolation problem.
@article{SIGMA_2017_13_a68,
     author = {Yasuhiko Yamada},
     title = {An {Elliptic} {Garnier} {System} from {Interpolation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a68/}
}
TY  - JOUR
AU  - Yasuhiko Yamada
TI  - An Elliptic Garnier System from Interpolation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a68/
LA  - en
ID  - SIGMA_2017_13_a68
ER  - 
%0 Journal Article
%A Yasuhiko Yamada
%T An Elliptic Garnier System from Interpolation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a68/
%G en
%F SIGMA_2017_13_a68
Yasuhiko Yamada. An Elliptic Garnier System from Interpolation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a68/

[1] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of {P}ainlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR | Zbl

[2] Nagao H., Yamada Y., “Study of $q$-Garnier system by Padé method”, Funkcial. Ekvac. (to appear) , arXiv: 1601.01099

[3] Nijhoff F., Delice N., On elliptic Lax pairs and isomonodromic deformation systems for elliptic lattice equations, arXiv: 1605.00829 | MR

[4] Noumi M., Tsujimoto S., Yamada Y., “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 463–482, arXiv: 1204.0294 | DOI | MR | Zbl

[5] Ohta Y., Ramani A., Grammaticos B., “An affine Weyl group approach to the eight-parameter discrete Painlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 10523–10532 | DOI | MR | Zbl

[6] Ormerod C. M., Rains E. M., “Commutation relations and discrete Garnier systems”, SIGMA, 12 (2016), 110, 50 pp., arXiv: 1601.06179 | DOI | MR | Zbl

[7] Ormerod C. M., Rains E. M., “An elliptic Garnier system”, Comm. Math. Phys., 355 (2017), 741–766, arXiv: 1607.07831 | DOI | MR

[8] Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 | DOI | MR | Zbl

[9] Rains E. M., The noncommutative geometry of elliptic difference equations, arXiv: 1607.08876

[10] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[11] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[12] Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135 | DOI | MR | Zbl

[13] Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796 | DOI | MR | Zbl

[14] Yamada Y., “Padé method to Painlevé equations”, Funkcial. Ekvac., 52 (2009), 83–92 | DOI | MR | Zbl

[15] Zhedanov A. S., “Padé interpolation table and biorthogonal rational functions”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, Kobe University, 2005, 323–363