@article{SIGMA_2017_13_a67,
author = {Boris A. Percino-Figueroa},
title = {Null {Angular} {Momentum} and {Weak} {KAM} {Solutions} of the {Newtonian} $N${-Body} {Problem}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a67/}
}
TY - JOUR AU - Boris A. Percino-Figueroa TI - Null Angular Momentum and Weak KAM Solutions of the Newtonian $N$-Body Problem JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a67/ LA - en ID - SIGMA_2017_13_a67 ER -
Boris A. Percino-Figueroa. Null Angular Momentum and Weak KAM Solutions of the Newtonian $N$-Body Problem. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a67/
[1] Abraham R., Marsden J. E., Raţiu T. S., Manifolds, tensor analysis, and applications, Global Analysis Pure and Applied: Series B, 2, Addison-Wesley Publishing Co., Reading, Mass., 1983 | MR | Zbl
[2] Arnol'd V. I. (ed.), Dynamical systems VIII, Encyclopaedia of Mathematical Sciences, 39, Springer-Verlag, Berlin, 1993 | DOI | Zbl
[3] Chenciner A., “Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. III, Higher Ed. Press, Beijing, 2002, 279–294 | MR | Zbl
[4] Contreras G., “Action potential and weak KAM solutions”, Calc. Var. Partial Differential Equations, 13 (2001), 427–458 | DOI | MR | Zbl
[5] da Luz A., Maderna E., “On the free time minimizers of the Newtonian $N$-body problem”, Math. Proc. Cambridge Philos. Soc., 156 (2014), 209–227, arXiv: 1301.7034 | DOI | MR | Zbl
[6] Ferrario D. L., Terracini S., “On the existence of collisionless equivariant minimizers for the classical $n$-body problem”, Invent. Math., 155 (2004), 305–362, arXiv: math-ph/0302022 | DOI | MR | Zbl
[7] Maderna E., “On weak KAM theory for $N$-body problems”, Ergodic Theory Dynam. Systems, 32 (2012), 1019–1041, arXiv: 1502.06273 | DOI | MR | Zbl
[8] Maderna E., “Translation invariance of weak KAM solutions of the Newtonian $N$-body problem”, Proc. Amer. Math. Soc., 141 (2013), 2809–2816, arXiv: 1105.4484 | DOI | MR | Zbl
[9] Marchal C., “How the method of minimization of action avoids singularities”, Celestial Mech. Dynam. Astronom., 83 (2002), 325–353 | DOI | MR | Zbl
[10] Meyer K. R., Offin D. C., Introduction to Hamiltonian dynamical systems and the $N$-body problem, Applied Mathematical Sciences, 90, 3rd ed., Springer, Cham, 2017 | DOI | MR | Zbl
[11] Percino B., Sánchez-Morgado H., “Busemann functions for the $N$-body problem”, Arch. Ration. Mech. Anal., 213 (2014), 981–991 | DOI | MR | Zbl
[12] Saari D. G., “Symmetry in $n$-particle systems”, Hamiltonian Dynamical Systems (Boulder, CO, 1987), Contemp. Math., 81, Amer. Math. Soc., Providence, RI, 1988, 23–42 | DOI | MR