@article{SIGMA_2017_13_a66,
author = {Makoto Miura},
title = {Minuscule {Schubert} {Varieties} and {Mirror} {Symmetry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a66/}
}
Makoto Miura. Minuscule Schubert Varieties and Mirror Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a66/
[1] Almkvist G., van Enckevort C., van Straten D., Zudilin W., Tables of Calabi–Yau equations, arXiv: math.AG/0507430
[2] Almkvist G., Zudilin W., “Differential equations, mirror maps and zeta values”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 481–515, arXiv: math.NT/0402386 | DOI | MR | Zbl
[3] Aspinwall P. S., Greene B. R., Morrison D. R., “The monomial-divisor mirror map”, Int. Math. Res. Not., 1993 (1993), 319–337, arXiv: alg-geom/9309007 | DOI | Zbl
[4] Baston R. J., Eastwood M. G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989 | MR
[5] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3 (1994), 493–535, arXiv: alg-geom/9310003 | MR | Zbl
[6] Batyrev V. V., “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano Conference, University Torino, Turin, 2004, 109–122, arXiv: alg-geom/9712034 | Zbl
[7] Batyrev V. V., Borisov L. A., “Mirror duality and string-theoretic Hodge numbers”, Invent. Math., 126 (1996), 183–203, arXiv: alg-geom/9509009 | DOI | MR | Zbl
[8] Batyrev V. V., Borisov L. A., “On Calabi–Yau complete intersections in toric varieties”, Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 39–65, arXiv: alg-geom/9412017 | Zbl
[9] Batyrev V. V., Ciocan-Fontanine I., Kim B., van Straten D., “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514 (1998), 640–666, arXiv: alg-geom/9710022 | DOI | MR | Zbl
[10] Batyrev V. V., Ciocan-Fontanine I., Kim B., van Straten D., “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184 (2000), 1–39, arXiv: math.AG/9803108 | DOI | MR | Zbl
[11] Batyrev V. V., Kreuzer M., “Constructing new Calabi–Yau 3-folds and their mirrors via conifold transitions”, Adv. Theor. Math. Phys., 14 (2010), 879–898, arXiv: 0802.3376 | DOI | MR | Zbl
[12] Bershadsky M., Cecotti S., Ooguri H., Vafa C., “Holomorphic anomalies in topological field theories”, Nuclear Phys. B, 405 (1993), 279–304, arXiv: hep-th/9302103 | DOI | MR | Zbl
[13] Bershadsky M., Cecotti S., Ooguri H., Vafa C., “Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes”, Comm. Math. Phys., 165 (1994), 311–427, arXiv: hep-th/9309140 | DOI | MR | Zbl
[14] Bertram A., “Quantum Schubert calculus”, Adv. Math., 128 (1997), 289–305, arXiv: alg-geom/9410024 | DOI | MR | Zbl
[15] Birkhoff G., Lattice theory, American Mathematical Society Colloquium Publications, 25, 3rd ed., Amer. Math. Soc., Providence, R.I., 1979 | MR | Zbl
[16] Bondal A., Galkin S. S., Degeneration of minuscule varieties, quiver toric varieties and mirror symmetry, Seminar at IPMU, 2010 | MR
[17] Borisov L. A., Towards the mirror symmetry for Calabi–Yau complete intersections in Gorenstein toric Fano varieties, arXiv: alg-geom/9310001
[18] Brown J., Lakshmibai V., “Singular loci of Bruhat–Hibi toric varieties”, J. Algebra, 319 (2008), 4759–4779, arXiv: 0707.2392 | DOI | MR | Zbl
[19] Brown J., Lakshmibai V., “Singular loci of Grassmann–Hibi toric varieties”, Michigan Math. J., 59 (2010), 243–267, arXiv: math.AG/0612289 | DOI | MR | Zbl
[20] Candelas P., de la Ossa X. C., Green P. S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl
[21] Chaput P. E., Manivel L., Perrin N., “Quantum cohomology of minuscule homogeneous spaces”, Transform. Groups, 13 (2008), 47–89, arXiv: math.AG/0607492 | DOI | MR | Zbl
[22] Clemens C. H., “Double solids”, Adv. Math., 47 (1983), 107–230 | DOI | MR | Zbl
[23] Fulton W., Woodward C., “On the quantum product of Schubert classes”, J. Algebraic Geom., 13 (2004), 641–661, arXiv: math.AG/0112183 | DOI | MR | Zbl
[24] Galkin S. S., An explicit construction of Miura's varieties, Talk presented at Tokyo University, Graduate School for Mathematical Sciences, Komaba Campus, February 20, 2014
[25] Galkin S. S., Apéry constants of homogeneous varieties, arXiv: 1604.04652
[26] Galkin S. S., Kuznetsov A., Movshev M., An explicit construction of Miura's varieties, in prepration
[27] Gerhardus A., Jockers H., “Dual pairs of gauged linear sigma models and derived equivalences of Calabi–Yau threefolds”, J. Geom. Phys., 114 (2017), 223–259, arXiv: 1505.00099 | DOI | MR | Zbl
[28] Givental A. B., “Equivariant Gromov–Witten invariants”, Int. Math. Res. Not., 1996 (1996), 613–663, arXiv: alg-geom/9603021 | DOI | MR | Zbl
[29] Gonciulea N., Lakshmibai V., “Degenerations of flag and Schubert varieties to toric varieties”, Transform. Groups, 1 (1996), 215–248 | DOI | MR | Zbl
[30] Gopakumar R., Vafa C., M-theory and topological strings-II, arXiv: hep-th/9812127
[31] Greene B. R., Plesser M. R., “Duality in Calabi–Yau moduli space”, Nuclear Phys. B, 338 (1990), 15–37 | DOI | MR
[32] Guest M. A., From quantum cohomology to integrable systems, Oxford Graduate Texts in Mathematics, 15, Oxford University Press, Oxford, 2008 | Zbl
[33] Hibi T., “Distributive lattices, affine semigroup rings and algebras with straightening laws”, Commutative Algebra and Combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 93–109 | MR
[34] Hibi T., Higashitani A., “Smooth Fano polytopes arising from finite partially ordered sets”, Discrete Comput. Geom., 45 (2011), 449–461, arXiv: 0908.3404 | DOI | MR | Zbl
[35] Hibi T., Watanabe K., “Study of three-dimensional algebras with straightening laws which are Gorenstein domains. I”, Hiroshima Math. J., 15 (1985), 27–54 | MR | Zbl
[36] Hori K., Knapp J., A pair of Calabi–Yau manifolds from a two parameter non-Abelian gauged linear sigma model, arXiv: 1612.06214
[37] Hosono S., Konishi Y., “Higher genus Gromov–Witten invariants of the Grassmannian, and the Pfaffian Calabi–Yau 3-folds”, Adv. Theor. Math. Phys., 13 (2009), 463–495, arXiv: 0704.2928 | DOI | MR | Zbl
[38] Hosono S., Lian B. H., Oguiso K., Yau S.-T., “Autoequivalences of derived category of a $K3$ surface and monodromy transformations”, J. Algebraic Geom., 13 (2004), 513–545, arXiv: math.AG/0201047 | DOI | MR | Zbl
[39] Hosono S., Takagi H., “Determinantal quintics and mirror symmetry of Reye congruences”, Comm. Math. Phys., 329 (2014), 1171–1218, arXiv: 1208.1813 | DOI | MR | Zbl
[40] Hosono S., Takagi H., “Mirror symmetry and projective geometry of Reye congruences I”, J. Algebraic Geom., 23 (2014), 279–312, arXiv: 1101.2746 | DOI | MR | Zbl
[41] Inoue D., Ito A., Miura M., Complete intersection Calabi–Yau manifolds with respect to homogeneous vector bundles on Grassmannians, arXiv: 1607.07821
[42] Inoue D., Ito A., Miura M., $I$-functions of Calabi–Yau 3-folds in Grassmannians, arXiv: 1607.08137
[43] Jones B. F., “Singular Chern classes of Schubert varieties via small resolution”, Int. Math. Res. Not., 2010 (2010), 1371–1416, arXiv: 0804.0202 | DOI | MR | Zbl
[44] Kawamata Y., “Deformations of canonical singularities”, J. Amer. Math. Soc., 12 (1999), 85–92, arXiv: alg-geom/9712018 | DOI | MR | Zbl
[45] Kim B., “Quantum hyperplane section theorem for homogeneous spaces”, Acta Math., 183 (1999), 71–99, arXiv: alg-geom/9712008 | DOI | MR | Zbl
[46] Kresch A., Tamvakis H., “Quantum cohomology of orthogonal Grassmannians”, Compos. Math., 140 (2004), 482–500, arXiv: math.AG/0306338 | DOI | MR | Zbl
[47] Lakshmibai V., Mukherjee H., “Singular loci of Hibi toric varieties”, J. Ramanujan Math. Soc., 26 (2011), 1–29, arXiv: 0706.2686 | DOI | MR
[48] Lakshmibai V., Musili C., Seshadri C. S., “Geometry of $G/P$. III. Standard monomial theory for a quasi-minuscule $P$”, Proc. Indian Acad. Sci. Sect. A Math. Sci., 88 (1979), 93–177 | DOI | MR | Zbl
[49] Lakshmibai V., Weyman J., “Multiplicities of points on a Schubert variety in a minuscule $G/P$”, Adv. Math., 84 (1990), 179–208 | DOI | MR | Zbl
[50] Lian B. H., Liu K., Yau S.-T., “Mirror principle. I”, Asian J. Math., 1 (1997), 729–763, arXiv: alg-geom/9712011 | DOI | MR | Zbl
[51] Morrison D. R., “Through the looking glass”, Mirror Symmetry, III (Montreal, PQ, 1995), AMS/IP Stud. Adv. Math., 10, Amer. Math. Soc., Providence, RI, 1999, 263–277, arXiv: alg-geom/9705028 | MR
[52] Mukai S., “Duality of polarized $K3$ surfaces”, New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge University Press, Cambridge, 1999, 311–326 | DOI | Zbl
[53] Nakayama N., Invariance of the plurigenera of algebraic varieties, RIMS preprint 1191, 1998
[54] Namikawa Y., “On deformations of Calabi–Yau $3$-folds with terminal singularities”, Topology, 33 (1994), 429–446 | DOI | MR | Zbl
[55] Perrin N., “Small resolutions of minuscule Schubert varieties”, Compos. Math., 143 (2007), 1255–1312, arXiv: math.AG/0601117 | DOI | MR | Zbl
[56] Perrin N., “The Gorenstein locus of minuscule Schubert varieties”, Adv. Math., 220 (2009), 505–522, arXiv: 0704.0895 | DOI | MR | Zbl
[57] Proctor R. A., Interactions between combinatorics, Lie theory and algebraic geometry via the Bruhat orders, Ph.D. Thesis, Massachusetts Institute of Technology, 1981 | MR
[58] Ravindra G. V., Srinivas V., “The Grothendieck–Lefschetz theorem for normal projective varieties”, J. Algebraic Geom., 15 (2006), 563–590, arXiv: math.AG/0511134 | DOI | MR | Zbl
[59] Rødland E. A., “The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian $G(2,7)$”, Compositio Math., 122 (2000), 135–149, arXiv: math.AG/9801092 | DOI | MR
[60] Stanley R. P., “Two poset polytopes”, Discrete Comput. Geom., 1 (1986), 9–23 | DOI | MR | Zbl
[61] Ueda K., Yoshida Y., Equivariant A-twisted GLSM and Gromov–Witten invariants of CY 3-folds in Grassmannians, arXiv: 1602.02487
[62] van Enckevort C., van Straten D., Electronic database of Calabi–Yau equations, http://enriques.mathematik.uni-mainz.de/CYequations/
[63] van Enckevort C., van Straten D., “Monodromy calculations of fourth order equations of Calabi–Yau type”, Mirror symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 539–559 | DOI | MR | Zbl
[64] Wagner D. G., “Singularities of toric varieties associated with finite distributive lattices”, J. Algebraic Combin., 5 (1996), 149–165 | DOI | MR | Zbl
[65] Zudilin V. V., “Binomial sums associated with rational approximations to $\zeta(4)$”, Math. Notes, 75 (2004), 594–597, arXiv: math.CA/0311196 | DOI | MR | Zbl