@article{SIGMA_2017_13_a64,
author = {Peter D. Miller and Yue Sheng},
title = {Rational {Solutions} of the {Painlev\'e-II} {Equation} {Revisited}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a64/}
}
Peter D. Miller; Yue Sheng. Rational Solutions of the Painlevé-II Equation Revisited. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a64/
[1] Airault H., “Rational solutions of Painlevé equations”, Stud. Appl. Math., 61 (1979), 31–53 | DOI | MR | Zbl
[2] Baik J., Deift P., Johansson K., “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178, arXiv: math.CO/9810105 | DOI | MR | Zbl
[3] Bass L., “Electrical structures of interfaces in steady electrolysis”, Trans. Faraday Soc., 60 (1964), 1656–1663 | DOI
[4] Bass L., Nimmo J. J. C., Rogers C., Schief W. K., “Electrical structures of interfaces: a Painlevé II model”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2117–2136 | DOI | MR | Zbl
[5] Bertola M., Bothner T., “Zeros of large degree Vorob'ev–Yablonski polynomials via a Hankel determinant identity”, Int. Math. Res. Not., 2015 (2015), 9330–9399, arXiv: 1401.1408 | DOI | MR | Zbl
[6] Bertola M., Cafasso M., “Darboux transformations and random point processes”, Int. Math. Res. Not., 2015 (2015), 6211–6266, arXiv: 1401.4752 | DOI | MR | Zbl
[7] Buckingham R. J., Miller P. D., “The sine-Gordon equation in the semiclassical limit: critical behavior near a separatrix”, J. Anal. Math., 118 (2012), 397–492, arXiv: 1106.5716 | DOI | MR | Zbl
[8] Buckingham R. J., Miller P. D., “Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour”, Nonlinearity, 27 (2014), 2489–2578, arXiv: 1310.2276 | DOI | MR
[9] Buckingham R. J., Miller P. D., “Large-degree asymptotics of rational Painlevé-II functions: critical behaviour”, Nonlinearity, 28 (2015), 1539–1596, arXiv: 1406.0826 | DOI | MR | Zbl
[10] Clarkson P. A., “Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations”, Comput. Methods Funct. Theory, 6 (2006), 329–401 | DOI | MR | Zbl
[11] Clarkson P. A., “Vortices and polynomials”, Stud. Appl. Math., 123 (2009), 37–62, arXiv: 0901.0139 | DOI | MR | Zbl
[12] Clarkson P. A., Mansfield E. L., “The second {P}ainlevé equation, its hierarchy and associated special polynomials”, Nonlinearity, 16 (2003), R1–R26 | DOI | MR | Zbl
[13] Costin O., Huang M., Tanveer S., “Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of $P_I$”, Duke Math. J., 163 (2014), 665–704, arXiv: 1209.1009 | DOI | MR | Zbl
[14] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.3.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368 | DOI | MR | Zbl
[16] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[17] Fokas A. S., Grammaticos B., Ramani A., “From continuous to discrete Painlevé equations”, J. Math. Anal. Appl., 180 (1993), 342–360 | DOI | MR | Zbl
[18] Fokas A. S., Its A. R., Kitaev A. V., “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl
[19] Fornberg B., Weideman J. A. C., “A computational exploration of the second Painlevé equation”, Found. Comput. Math., 14 (2014), 985–1016 | DOI | MR | Zbl
[20] Fukutani S., Okamoto K., Umemura H., “Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations”, Nagoya Math. J., 159 (2000), 179–200 | DOI | MR | Zbl
[21] Iwasaki K., Kajiwara K., Nakamura T., “Generating function associated with the rational solutions of the Painlevé II equation”, J. Phys. A: Math. Gen., 35 (2002), L207–L211, arXiv: nlin.SI/0112043 | DOI | MR | Zbl
[22] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[23] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[24] Johnson C. V., String theory without branes, arXiv: hep-th/0610223
[25] Joshi N., Kitaev A. V., Treharne P. A., “On the linearization of the first and second Painlevé equations”, J. Phys. A: Math. Gen., 42 (2009), 055208, 18 pp., arXiv: 0806.0271 | DOI | MR | Zbl
[26] Kajiwara K., Ohta Y., “Determinant structure of the rational solutions for the Painlevé II equation”, J. Math. Phys., 37 (1996), 4693–4704, arXiv: solv-int/9607002 | DOI | MR | Zbl
[27] Kametaka Y., Noda M., Fukui Y., Hirano S., “A numerical approach to Toda equation and Painlevé II equation”, Mem. Fac. Eng. Ehime Univ., 9 (1986), 1–24
[28] Kapaev A. A., “Scaling limits in the second Painlevé transcendent”, J. Math. Sci., 83 (1997), 38–61 | DOI | MR
[29] Kapaev A. A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A: Math. Gen., 37 (2004), 11149–11167, arXiv: nlin.SI/0404026 | DOI | MR | Zbl
[30] Kapaev A. A., Kitaev A. V., “Passage to the limit ${\rm P}_2\to{\rm P}_1$”, J. Math. Sci., 73 (1994), 460–467 | DOI | MR
[31] Lukashevich N. A., “The second Painlevé equation”, Differ. Equations, 7 (1971), 853–854
[32] Murata Y., “Rational solutions of the second and the fourth Painlevé equations”, Funkcial. Ekvac., 28 (1985), 1–32 | MR | Zbl
[33] Novokshenov V. Y., “Distributions of poles to Painlevé transcendents via Padé approximations”, Constr. Approx., 39 (2014), 85–99 | DOI | MR | Zbl
[34] Roffelsen P., “Irrationality of the roots of the Yablonskii–Vorob'ev polynomials and relations between them”, SIGMA, 6 (2010), 095, 11 pp., arXiv: 1012.2933 | DOI | MR | Zbl
[35] Roffelsen P., “On the number of real roots of the Yablonskii–Vorob'ev polynomials”, SIGMA, 8 (2012), 099, 9 pp., arXiv: 1208.2337 | DOI | MR | Zbl
[36] Rogers C., Bassom A. P., Schief W. K., “On a Painlevé II model in steady electrolysis: application of a Bäcklund transformation”, J. Math. Anal. Appl., 240 (1999), 367–381 | DOI | MR | Zbl
[37] Shapiro B., Tater M., On spectral asymptotics of quasi-exactly solvable quartic and Yablonskii–Vorob'ev polynomials, arXiv: 1412.3026
[38] Vorob'ev A. P., “On the rational solutions of the second Painlevé equation”, Differ. Equations, 1 (1965), 58–59 | Zbl
[39] Yablonskii A. I., “On rational solutions of the second Painlevé equation”, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk, 1959, no. 3, 30–35