@article{SIGMA_2017_13_a63,
author = {Chi Zhang and Hua-Lin Huang},
title = {A {Generalization} of the {Doubling} {Construction} for {Sums} of {Squares} {Identities}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/}
}
TY - JOUR AU - Chi Zhang AU - Hua-Lin Huang TI - A Generalization of the Doubling Construction for Sums of Squares Identities JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/ LA - en ID - SIGMA_2017_13_a63 ER -
Chi Zhang; Hua-Lin Huang. A Generalization of the Doubling Construction for Sums of Squares Identities. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/
[1] Hu Y.-Q., Huang H.-L., Zhang C., “$\mathbb{Z}_2^n$-graded quasialgebras and the Hurwitz problem on compositions of quadratic forms”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1506.01502 | DOI
[2] Hurwitz A.,, “Über die Composition der quadratischen Formen von beliebig vielen Variabeln”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1898, 309–316 | Zbl
[3] Hurwitz A., “Über die Komposition der quadratischen Formen”, Math. Ann., 88 (1922), 1–25 | DOI | MR | Zbl
[4] Lam T. Y., Smith T. L., “On Yuzvinsky's monomial pairings”, Quart. J. Math. Oxford Ser. (2), 44 (1993), 215–237 | DOI | MR | Zbl
[5] Lenzhen A., Morier-Genoud S., Ovsienko V., “New solutions to the Hurwitz problem on square identities”, J. Pure Appl. Algebra, 215 (2011), 2903–2911, arXiv: 1007.2337 | DOI | MR | Zbl
[6] Radon J., “Lineare Scharen orthogonaler Matrizen”, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 1–14 | DOI | MR
[7] Shapiro D. B., Compositions of quadratic forms, De Gruyter Expositions in Mathematics, 33, Walter de Gruyter Co, Berlin, 2000 | DOI | Zbl
[8] Yuzvinsky S., “Orthogonal pairings of Euclidean spaces”, Michigan Math. J., 28 (1981), 131–145 | DOI | MR | Zbl
[9] Yuzvinsky S., “A series of monomial pairings”, Linear and Multilinear Algebra, 15 (1984), 109–119 | DOI | MR | Zbl