A Generalization of the Doubling Construction for Sums of Squares Identities
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple $[r,s,n]$ a series of new ones $[r+\rho(2^{m-1}),2^ms,2^mn]$ for all positive integer $m$, where $\rho$ is the Hurwitz–Radon function.
Keywords: Hurwitz problem; square identity.
@article{SIGMA_2017_13_a63,
     author = {Chi Zhang and Hua-Lin Huang},
     title = {A {Generalization} of the {Doubling} {Construction} for {Sums} of {Squares} {Identities}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/}
}
TY  - JOUR
AU  - Chi Zhang
AU  - Hua-Lin Huang
TI  - A Generalization of the Doubling Construction for Sums of Squares Identities
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/
LA  - en
ID  - SIGMA_2017_13_a63
ER  - 
%0 Journal Article
%A Chi Zhang
%A Hua-Lin Huang
%T A Generalization of the Doubling Construction for Sums of Squares Identities
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/
%G en
%F SIGMA_2017_13_a63
Chi Zhang; Hua-Lin Huang. A Generalization of the Doubling Construction for Sums of Squares Identities. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a63/

[1] Hu Y.-Q., Huang H.-L., Zhang C., “$\mathbb{Z}_2^n$-graded quasialgebras and the Hurwitz problem on compositions of quadratic forms”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1506.01502 | DOI

[2] Hurwitz A.,, “Über die Composition der quadratischen Formen von beliebig vielen Variabeln”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1898, 309–316 | Zbl

[3] Hurwitz A., “Über die Komposition der quadratischen Formen”, Math. Ann., 88 (1922), 1–25 | DOI | MR | Zbl

[4] Lam T. Y., Smith T. L., “On Yuzvinsky's monomial pairings”, Quart. J. Math. Oxford Ser. (2), 44 (1993), 215–237 | DOI | MR | Zbl

[5] Lenzhen A., Morier-Genoud S., Ovsienko V., “New solutions to the Hurwitz problem on square identities”, J. Pure Appl. Algebra, 215 (2011), 2903–2911, arXiv: 1007.2337 | DOI | MR | Zbl

[6] Radon J., “Lineare Scharen orthogonaler Matrizen”, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 1–14 | DOI | MR

[7] Shapiro D. B., Compositions of quadratic forms, De Gruyter Expositions in Mathematics, 33, Walter de Gruyter Co, Berlin, 2000 | DOI | Zbl

[8] Yuzvinsky S., “Orthogonal pairings of Euclidean spaces”, Michigan Math. J., 28 (1981), 131–145 | DOI | MR | Zbl

[9] Yuzvinsky S., “A series of monomial pairings”, Linear and Multilinear Algebra, 15 (1984), 109–119 | DOI | MR | Zbl