@article{SIGMA_2017_13_a62,
author = {Victor Mouquin},
title = {The {Fock{\textendash}Rosly} {Poisson} {Structure} as {Defined} by a {Quasi-Triangular} $r${-Matrix}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a62/}
}
Victor Mouquin. The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular $r$-Matrix. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a62/
[1] Alekseev A., Kosmann-Schwarzbach Y., “Manin pairs and moment maps”, J. Differential Geom., 56 (2000), 133–165, arXiv: math.DG/9909176 | DOI | MR | Zbl
[2] Alekseev A., Kosmann-Schwarzbach Y., Meinrenken E., “Quasi-Poisson manifolds”, Canad. J. Math., 54 (2002), 3–29, arXiv: math.DG/0006168 | DOI | MR | Zbl
[3] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[4] Fock V. V., Rosly A. A., “Flat connections and polyubles”, Theoret. and Math. Phys., 95 (1993), 228–238 | DOI | MR | Zbl
[5] Fock V. V., Rosly A. A., “Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 67–86, arXiv: math.QA/9802054 | DOI | MR | Zbl
[6] Li-Bland D., Ševera P., “Quasi-Hamiltonian groupoids and multiplicative Manin pairs”, Int. Math. Res. Not., 2011 (2011), 2295–2350, arXiv: 0911.2179 | DOI | MR | Zbl
[7] Li-Bland D., Ševera P., “Moduli spaces for quilted surfaces and Poisson structures”, Doc. Math., 20 (2015), 1071–1135, arXiv: 1212.2097 | MR | Zbl
[8] Lu J.-H., Mouquin V., “Mixed product Poisson structures associated to Poisson Lie groups and Lie bialgebras”, Int. Math. Res. Not. (to appear) , arXiv: 1504.06843 | DOI
[9] Massuyeau G., Turaev V., “Quasi-Poisson structures on representation spaces of surfaces”, Int. Math. Res. Not., 2014 (2014), 1–64, arXiv: 1205.4898 | DOI | MR | Zbl
[10] Meusburger C., Wise D. K., Hopf algebra gauge theory on a ribbon graph, arXiv: 1512.03966