Part III, Free Actions of Compact Quantum Groups on $\mathrm{C}^*$-Algebras
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study and classify free actions of compact quantum groups on unital $\mathrm{C}^*$-algebras in terms of generalized factor systems. Moreover, we use these factor systems to show that all finite coverings of irrational rotation $\mathrm{C}^*$-algebras are cleft.
Keywords: free action; $\mathrm{C}^*$-algebra; quantum group; factor system; finite covering.
@article{SIGMA_2017_13_a61,
     author = {Kay Schwieger and Stefan Wagner},
     title = {Part~III, {Free} {Actions} of {Compact} {Quantum} {Groups} on $\mathrm{C}^*${-Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a61/}
}
TY  - JOUR
AU  - Kay Schwieger
AU  - Stefan Wagner
TI  - Part III, Free Actions of Compact Quantum Groups on $\mathrm{C}^*$-Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a61/
LA  - en
ID  - SIGMA_2017_13_a61
ER  - 
%0 Journal Article
%A Kay Schwieger
%A Stefan Wagner
%T Part III, Free Actions of Compact Quantum Groups on $\mathrm{C}^*$-Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a61/
%G en
%F SIGMA_2017_13_a61
Kay Schwieger; Stefan Wagner. Part III, Free Actions of Compact Quantum Groups on $\mathrm{C}^*$-Algebras. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a61/

[1] Albeverio S., Høegh-Krohn R., “Ergodic actions by compact groups on $C^{\ast}$-algebras”, Math. Z., 174 (1980), 1–17 | DOI | MR | Zbl

[2] Banica T., “Fusion rules for representations of compact quantum groups”, Exposition. Math., 17 (1999), 313–337, arXiv: math.QA/9811039 | MR | Zbl

[3] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum group on unital ${\rm C}^*$-algebras, arXiv: 1304.2812 | MR

[4] Bichon J., De Rijdt A., Vaes S., “Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups”, Comm. Math. Phys., 262 (2006), 703–728, arXiv: math.QA/0502018 | DOI | MR | Zbl

[5] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159, arXiv: math.QA/0011194 | DOI | MR | Zbl

[6] De Commer K., Actions of compact quantum groups, arXiv: 1604.00159 | MR

[7] De Commer K., Yamashita M., “A construction of finite index ${\rm C}^*$-algebra inclusions from free actions of compact quantum groups”, Publ. Res. Inst. Math. Sci., 49 (2013), 709–735, arXiv: 1201.4022 | DOI | MR | Zbl

[8] De Commer K., Yamashita M., “Tannaka–Krein duality for compact quantum homogeneous spaces. I. General theory”, Theory Appl. Categ., 28:31 (2013), 1099–1138, arXiv: 1211.6552 | MR | Zbl

[9] Echterhoff S., Nest R., Oyono-Oyono H., “Principal non-commutative torus bundles”, Proc. Lond. Math. Soc., 99 (2009), 1–31, arXiv: 0810.0111 | DOI | MR | Zbl

[10] Ellwood D. A., “A new characterisation of principal actions”, J. Funct. Anal., 173 (2000), 49–60 | DOI | MR | Zbl

[11] Gabriel O., “Fixed points of compact quantum groups actions on Cuntz algebras”, Ann. Henri Poincaré, 15 (2014), 1013–1036, arXiv: 1210.5630 | DOI | MR | Zbl

[12] Gabriel O., Weber M., “Fixed point algebras for easy quantum groups”, SIGMA, 12 (2016), 097, 21 pp., arXiv: 1606.00569 | DOI | MR | Zbl

[13] Gootman E. C., Lazar A. J., Peligrad C., “Spectra for compact group actions”, J. Operator Theory, 31 (1994), 381–399 | MR | Zbl

[14] Konishi Y., Nagisa M., Watatani Y., “Some remarks on actions of compact matrix quantum groups on $C^*$-algebras”, Pacific J. Math., 153 (1992), 119–127 | DOI | MR

[15] Landi G., van Suijlekom W., “Principal fibrations from noncommutative spheres”, Comm. Math. Phys., 260 (2005), 203–225, arXiv: math.QA/0410077 | DOI | MR | Zbl

[16] Marciniak M., “Actions of compact quantum groups on $C^*$-algebras”, Proc. Amer. Math. Soc., 126 (1998), 607–616 | DOI | MR | Zbl

[17] Neshveyev S., “Duality theory for nonergodic actions”, Münster J. Math., 7 (2014), 413–437, arXiv: 1303.6207 | DOI | MR | Zbl

[18] Neshveyev S., Tuset L., Compact quantum groups and their representation categories, Cours Spécialisés, 20, Société Mathématique de France, Paris, 2013 | MR | Zbl

[19] Olesen D., Pedersen G. K., Takesaki M., “Ergodic actions of compact abelian groups”, J. Operator Theory, 3 (1980), 237–269 | MR | Zbl

[20] Peligrad C., “Locally compact group actions on $C^*$-algebras and compact subgroups”, J. Funct. Anal., 76 (1988), 126–139 | DOI | MR | Zbl

[21] Phillips N. C., Equivariant $K$-theory and freeness of group actions on $C^*$-algebras, Lecture Notes in Math., 1274, Springer-Verlag, Berlin, 1987 | DOI | MR

[22] Phillips N. C., “Freeness of actions of finite groups on $C^*$-algebras”, Operator Structures and Dynamical Systems, Contemp. Math., 503, Amer. Math. Soc., Providence, RI, 2009, 217–257 | DOI | MR | Zbl

[23] Podleś P., “Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups”, Comm. Math. Phys., 170 (1995), 1–20, arXiv: hep-th/9402069 | DOI | MR | Zbl

[24] Rieffel M. A., “The cancellation theorem for projective modules over irrational rotation $C^*$-algebras”, Proc. London Math. Soc., 47 (1983), 285–302 | DOI | MR | Zbl

[25] Rieffel M. A., “Nonstable $K$-theory and noncommutative tori”, Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), Contemp. Math., 62, Amer. Math. Soc., Providence, RI, 1987, 267–279 | DOI

[26] Rieffel M. A., “Proper actions of groups on $C^*$-algebras”, Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., 84, eds. H. Araki, R. V. Kadison, Birkhäuser Boston, Boston, MA, 1990, 141–182 | DOI | MR

[27] Schwieger K., Wagner S., “Part I, Free actions of compact Abelian groups on ${\rm C}^*$-algebras”, Adv. Math., 317 (2017), 224–266, arXiv: 1505.00688 | DOI | MR | Zbl

[28] Schwieger K., Wagner S., “Part II, Free actions of compact groups on ${\rm C}^*$-algebras”, J. Noncommut. Geom., 11 (2017), 641–668, arXiv: 1508.07904 | DOI | MR | Zbl

[29] Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl

[30] Wagner S., “Free group actions from the viewpoint of dynamical systems”, Münster J. Math., 5 (2012), 73–97, arXiv: 1111.5562 | MR | Zbl

[31] Wassermann A., “Ergodic actions of compact groups on operator algebras. I. General theory”, Ann. of Math., 130 (1989), 273–319 | DOI | MR | Zbl

[32] Wassermann A., “Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions”, Canad. J. Math., 40 (1988), 1482–1527 | DOI | MR

[33] Wassermann A., “Ergodic actions of compact groups on operator algebras. III. Classification for ${\rm SU}(2)$”, Invent. Math., 93 (1988), 309–354 | DOI | MR | Zbl

[34] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl