An Energy Gap for Complex Yang–Mills Equations
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the energy gap result of pure Yang–Mills equation [Feehan P.M.N., Adv. Math. 312 (2017), 547–587] to prove another energy gap result of complex Yang–Mills equations [Gagliardo M., Uhlenbeck K., J. Fixed Point Theory Appl. 11 (2012), 185–198], when Riemannian manifold $X$ of dimension $n\geq 2$ satisfies certain conditions.
Keywords: complex Yang–Mills equations; energy gap; gauge theory.
@article{SIGMA_2017_13_a60,
     author = {Teng Huang},
     title = {An {Energy} {Gap} for {Complex} {Yang{\textendash}Mills} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/}
}
TY  - JOUR
AU  - Teng Huang
TI  - An Energy Gap for Complex Yang–Mills Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/
LA  - en
ID  - SIGMA_2017_13_a60
ER  - 
%0 Journal Article
%A Teng Huang
%T An Energy Gap for Complex Yang–Mills Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/
%G en
%F SIGMA_2017_13_a60
Teng Huang. An Energy Gap for Complex Yang–Mills Equations. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/

[1] Bourguignon J.-P., Lawson H. B., “Stability and isolation phenomena for Yang–Mills fields”, Comm. Math. Phys., 79 (1981), 189–230 | DOI | MR | Zbl

[2] Bourguignon J.-P., Lawson H. B., Simons J., “Stability and gap phenomena for Yang–Mills fields”, Proc. Nat. Acad. Sci. USA, 76 (1979), 1550–1553 | DOI | MR | Zbl

[3] Dodziuk J., Min-Oo M., “An $L_{2}$-isolation theorem for Yang–Mills fields over complete manifolds”, Compositio Math., 47 (1982), 165–169 | MR | Zbl

[4] Donaldson S. K., Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics, 47, Cambridge University Press, Cambridge, 2002 | DOI | MR

[5] Donaldson S. K., Kronheimer P. B., The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990 | MR

[6] Feehan P. M. N., Global existence and convergence of smooth solutions to Yang–Mills gradient flow over compact four-manifolds, arXiv: 1409.1525

[7] Feehan P. M. N., “Energy gap for Yang–Mills connections, I: Four-dimensional closed Riemannian manifolds”, Adv. Math., 296 (2016), 55–84, arXiv: 1412.4114 | DOI | MR | Zbl

[8] Feehan P. M. N., “Energy gap for Yang–Mills connections, II: Arbitrary closed Riemannian manifolds”, Adv. Math., 312 (2017), 547–587, arXiv: 1502.00668 | DOI | MR | Zbl

[9] Gagliardo M., Uhlenbeck K., “Geometric aspects of the Kapustin–Witten equations”, J. Fixed Point Theory Appl., 11 (2012), 185–198, arXiv: 1401.7366 | DOI | MR | Zbl

[10] Gerhardt C., “An energy gap for Yang–Mills connections”, Comm. Math. Phys., 298 (2010), 515–522, arXiv: 0908.0767 | DOI | MR | Zbl

[11] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, 2nd ed., Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[12] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[13] Huang T., A proof on energy gap for Yang–Mills connection, arXiv: 1704.02772

[14] Min-Oo M., “An $L_2$-isolation theorem for Yang–Mills fields”, Compositio Math., 47 (1982), 153–163 | MR | Zbl

[15] Sedlacek S., “A direct method for minimizing the Yang–Mills functional over $4$-manifolds”, Comm. Math. Phys., 86 (1982), 515–527 | DOI | MR | Zbl

[16] Simpson C. T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl

[17] Taubes C. H., “Self-dual Yang–Mills connections on non-self-dual $4$-manifolds”, J. Differential Geom., 17 (1982), 139–170 | DOI | MR | Zbl

[18] Uhlenbeck K. K., “Removable singularities in Yang–Mills fields”, Comm. Math. Phys., 83 (1982), 11–29 | DOI | MR | Zbl

[19] Uhlenbeck K. K., “Connections with $L^p$ bounds on curvature”, Comm. Math. Phys., 83 (1982), 31–42 | DOI | MR | Zbl

[20] Uhlenbeck K. K., “The Chern classes of Sobolev connections”, Comm. Math. Phys., 101 (1985), 449–457 | DOI | MR | Zbl

[21] Wehrheim K., Uhlenbeck compactness, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2004 | DOI | MR | Zbl