@article{SIGMA_2017_13_a60,
author = {Teng Huang},
title = {An {Energy} {Gap} for {Complex} {Yang{\textendash}Mills} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/}
}
Teng Huang. An Energy Gap for Complex Yang–Mills Equations. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a60/
[1] Bourguignon J.-P., Lawson H. B., “Stability and isolation phenomena for Yang–Mills fields”, Comm. Math. Phys., 79 (1981), 189–230 | DOI | MR | Zbl
[2] Bourguignon J.-P., Lawson H. B., Simons J., “Stability and gap phenomena for Yang–Mills fields”, Proc. Nat. Acad. Sci. USA, 76 (1979), 1550–1553 | DOI | MR | Zbl
[3] Dodziuk J., Min-Oo M., “An $L_{2}$-isolation theorem for Yang–Mills fields over complete manifolds”, Compositio Math., 47 (1982), 165–169 | MR | Zbl
[4] Donaldson S. K., Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics, 47, Cambridge University Press, Cambridge, 2002 | DOI | MR
[5] Donaldson S. K., Kronheimer P. B., The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990 | MR
[6] Feehan P. M. N., Global existence and convergence of smooth solutions to Yang–Mills gradient flow over compact four-manifolds, arXiv: 1409.1525
[7] Feehan P. M. N., “Energy gap for Yang–Mills connections, I: Four-dimensional closed Riemannian manifolds”, Adv. Math., 296 (2016), 55–84, arXiv: 1412.4114 | DOI | MR | Zbl
[8] Feehan P. M. N., “Energy gap for Yang–Mills connections, II: Arbitrary closed Riemannian manifolds”, Adv. Math., 312 (2017), 547–587, arXiv: 1502.00668 | DOI | MR | Zbl
[9] Gagliardo M., Uhlenbeck K., “Geometric aspects of the Kapustin–Witten equations”, J. Fixed Point Theory Appl., 11 (2012), 185–198, arXiv: 1401.7366 | DOI | MR | Zbl
[10] Gerhardt C., “An energy gap for Yang–Mills connections”, Comm. Math. Phys., 298 (2010), 515–522, arXiv: 0908.0767 | DOI | MR | Zbl
[11] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, 2nd ed., Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[12] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[13] Huang T., A proof on energy gap for Yang–Mills connection, arXiv: 1704.02772
[14] Min-Oo M., “An $L_2$-isolation theorem for Yang–Mills fields”, Compositio Math., 47 (1982), 153–163 | MR | Zbl
[15] Sedlacek S., “A direct method for minimizing the Yang–Mills functional over $4$-manifolds”, Comm. Math. Phys., 86 (1982), 515–527 | DOI | MR | Zbl
[16] Simpson C. T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl
[17] Taubes C. H., “Self-dual Yang–Mills connections on non-self-dual $4$-manifolds”, J. Differential Geom., 17 (1982), 139–170 | DOI | MR | Zbl
[18] Uhlenbeck K. K., “Removable singularities in Yang–Mills fields”, Comm. Math. Phys., 83 (1982), 11–29 | DOI | MR | Zbl
[19] Uhlenbeck K. K., “Connections with $L^p$ bounds on curvature”, Comm. Math. Phys., 83 (1982), 31–42 | DOI | MR | Zbl
[20] Uhlenbeck K. K., “The Chern classes of Sobolev connections”, Comm. Math. Phys., 101 (1985), 449–457 | DOI | MR | Zbl
[21] Wehrheim K., Uhlenbeck compactness, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2004 | DOI | MR | Zbl