On Reductions of the Hirota–Miwa Equation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hirota–Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota–Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale–Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.
Keywords: Hirota–Miwa equation; Liouville integrable maps; Somos sequences; cluster algebras.
@article{SIGMA_2017_13_a56,
     author = {Andrew N. W. Hone and Theodoros E. Kouloukas and Chloe Ward},
     title = {On {Reductions} of the {Hirota{\textendash}Miwa} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a56/}
}
TY  - JOUR
AU  - Andrew N. W. Hone
AU  - Theodoros E. Kouloukas
AU  - Chloe Ward
TI  - On Reductions of the Hirota–Miwa Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a56/
LA  - en
ID  - SIGMA_2017_13_a56
ER  - 
%0 Journal Article
%A Andrew N. W. Hone
%A Theodoros E. Kouloukas
%A Chloe Ward
%T On Reductions of the Hirota–Miwa Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a56/
%G en
%F SIGMA_2017_13_a56
Andrew N. W. Hone; Theodoros E. Kouloukas; Chloe Ward. On Reductions of the Hirota–Miwa Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a56/

[1] Braden H. W., Enolskii V. Z., Hone A. N. W., “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”, J. Nonlinear Math. Phys., 12:2 (2005), 46–62, arXiv: math.NT/0501162 | DOI | MR | Zbl

[2] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations. III”, J. Phys. Soc. Japan, 52 (1983), 388–393 | DOI | MR | Zbl

[3] Doliwa A., Lin R., “Discrete KP equation with self-consistent sources”, Phys. Lett. A, 378 (2014), 1925–1931, arXiv: 1310.4636 | DOI | MR | Zbl

[4] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[5] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl

[6] Fordy A. P., Hone A. N. W., “Discrete integrable systems and Poisson algebras from cluster maps”, Comm. Math. Phys., 325 (2014), 527–584, arXiv: 1207.6072 | DOI | MR | Zbl

[7] Fordy A. P., Marsh R. J., “Cluster mutation-periodic quivers and associated Laurent sequences”, J. Algebraic Combin., 34 (2011), 19–66, arXiv: 0904.0200 | DOI | MR | Zbl

[8] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: math.QA/0309138 | DOI | MR | Zbl

[9] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[10] Hirota R., “Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR | Zbl

[11] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[12] Hone A. N.W., Inoue R., “Discrete Painlevé equations from Y-systems”, J. Phys. A: Math. Theor., 47 (2014), 474007, 26 pp., arXiv: 1405.5379 | DOI | MR | Zbl

[13] Hone A. N.W., Kouloukas T. E., Quispel G. R. W., Some integrable maps and their Hirota bilinear forms, in preparation

[14] Hone A. N. W., van der Kamp P. H., Quispel G. R. W., Tran D. T., “Integrability of reductions of the discrete Korteweg–de Vries and potential Korteweg–de Vries equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120747, 23 pp., arXiv: 1211.6958 | DOI | MR | Zbl

[15] Inoue R., Nakanishi T., “Difference equations and cluster algebras I: Poisson bracket for integrable difference equations”, Infinite Analysis 2010 – Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu, B28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 63–88, arXiv: 1012.5574 | MR

[16] Jeong I.-J., Musiker G., Zhang S., “Gale–Robinson sequences and brane tilings”, 25th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2013, Discrete Math. Theor. Comput. Sci. Proc., AS, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2013, 707–718 | MR | Zbl

[17] Krichever I., Lipan O., Wiegmann P., Zabrodin A., “Quantum integrable models and discrete classical Hirota equations”, Comm. Math. Phys., 188 (1997), 267–304 | DOI | MR | Zbl

[18] Maeda S., “Completely integrable symplectic mapping”, Proc. Japan Acad. Ser. A Math. Sci., 63 (1987), 198–200 | DOI | MR | Zbl

[19] Maruno K., Quispel G. R. W., “Construction of integrals of higher-order mappings”, J. Phys. Soc. Japan, 75 (2006), 123001, 5 pp., arXiv: nlin.SI/0611020 | DOI | MR

[20] Mase T., “Investigation into the role of the Laurent property in integrability”, J. Math. Phys., 57 (2016), 022703, 21 pp., arXiv: 1505.01722 | DOI | MR | Zbl

[21] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl

[22] Mumford D., Tata lectures on theta, v. II, Progress in Mathematics, 43, Jacobian theta functions and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI | MR | Zbl

[23] Taimanov I. A., “Secants of abelian varieties, theta functions and soliton equations”, Russian Math. Surveys, 52 (1997), 147–218, arXiv: alg-geom/9609019 | DOI | MR | Zbl

[24] Tran D. T., van der Kamp P. H., Quispel G. R. W., “Poisson brackets of mappings obtained as $(q,-p)$ reductions of lattice equations”, Regul. Chaotic Dyn., 21 (2016), 682–696, arXiv: 1608.08010 | DOI | MR | Zbl

[25] van der Kamp P. H., Quispel G. R. W., “The staircase method: integrals for periodic reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 43 (2010), 465207, 34 pp., arXiv: 1005.2071 | DOI | MR | Zbl

[26] Vekslerchik V. E., Finite-genus solutions for the Hirota's bilinear difference equation, arXiv: nlin.SI/0002005

[27] Veselov A. P., “Integrable mappings”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl

[28] Ward C., Discrete integrability and nonlinear recurrences with the Laurent property, Ph.D. Thesis, University of Kent, 2013

[29] Zabrodin A. V., “Hirota difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392, arXiv: solv-int/9704001 | DOI | MR