@article{SIGMA_2017_13_a55,
author = {Nicolay M. Bogoliubov and Cyril Malyshev},
title = {Zero {Range} {Process} and {Multi-Dimensional} {Random} {Walks}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a55/}
}
Nicolay M. Bogoliubov; Cyril Malyshev. Zero Range Process and Multi-Dimensional Random Walks. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a55/
[1] Bogoliubov N. M., “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415–9430, arXiv: cond-mat/0503748 | DOI | MR | Zbl
[2] Bogoliubov N. M., “The $XXO$ {H}eisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636–5643 | DOI | MR
[3] Bogoliubov N. M., “Calculation of correlation functions in totally asymmetric exactly solvable models on a ring”, Theoret. and Math. Phys., 175 (2013), 755–762 | DOI | MR | Zbl
[4] Bogoliubov N. M., Quantum walks and phase operators, in preparation
[5] Bogoliubov N. M., Bullough R. K., Pang G. D., “Exact solution of the $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495–11498 | DOI | MR
[6] Bogoliubov N. M., Malyshev C., “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nuclear Phys. B, 879 (2014), 268–291, arXiv: 1401.7624 | DOI | MR | Zbl
[7] Bogoliubov N. M., Malyshev C. L., “Integrable models and combinatorics”, Russ. Math. Surv., 70 (2015), 789–856 | DOI | MR | Zbl
[8] Bogoliubov N. M., Nassar T., “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345–350 | DOI | MR | Zbl
[9] Brak R., Essam J. W., “Simple asymmetric exclusion model and lattice paths: bijections and involutions”, J. Phys. A: Math. Theor., 45 (2012), 494007, 22 pp., arXiv: 1209.1446 | DOI | MR | Zbl
[10] Bravyi S., Caha L., Movassagh R., Nagaj D., Shor P. W., “Criticality without frustration for quantum spin-1 chains”, Phys. Rev. Lett., 109 (2012), 207202, 5 pp., arXiv: 1203.5801 | DOI
[11] Carruters P., Nieto M., “Phase and angle variables in quantum mechanics”, Rev. Modern Phys., 40 (1968), 411–440 | DOI
[12] Evans M. R., Hanney T., “Nonequilibrium statistical mechanics of the zero-range process and related models”, J. Phys. A: Math. Gen., 38 (2005), R195–R240, arXiv: cond-mat/0501338 | DOI | MR | Zbl
[13] Faddeev L. D., “Quantum completely integrable models in field theory”, Sov. Sci. Rev. Sect. C, Math. Phys. Rev., 1 (1980), 107–155 | MR | Zbl
[14] Forrester P. J., “Random walks and random permutations”, J. Phys. A: Math. Gen., 34 (2001), L417–L423, arXiv: math.CO/9907037 | DOI | MR | Zbl
[15] Großkinsky S., Schütz G. M., Spohn H., “Condensation in the zero range process: stationary and dynamical properties”, J. Stat. Phys., 113 (2003), 389–410, arXiv: cond-mat/0302079 | DOI | MR | Zbl
[16] Kanai M., “Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process”, J. Phys. A: Math. Theor., 40 (2007), 7127–7138, arXiv: cond-mat/0701190 | DOI | MR | Zbl
[17] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl
[18] Krattenthaler C., “Lattice path enumeration”, Handbook of Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton), ed. M. Bóna, CRC Press, Boca Raton, FL, 2015, 589–678, arXiv: 1503.05930 | MR | Zbl
[19] Kulish P. P., Damaskinsky E. V., “On the {$q$} oscillator and the quantum algebra ${\rm su}_q(1,1)$”, J. Phys. A: Math. Gen., 23 (1990), L415–L419 | DOI | MR | Zbl
[20] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Phys., 151, Springer, Berlin–New York, 1982, 61–119 | DOI | MR
[21] Kuniba A., Maruyama S., Okado M., “Inhomogeneous generalization of a multispecies totally asymmetric zero range process”, J. Stat. Phys., 164 (2016), 952–968, arXiv: 1602.00764 | DOI | MR | Zbl
[22] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[23] Mackay T. D., Bartlett S. D., Stephenson L. T., Sanders B. C., “Quantum walks in higher dimensions”, J. Phys. A: Math. Gen., 35 (2002), 2745–2753, arXiv: quant-ph/0108004 | DOI | MR | Zbl
[24] Mortimer P. R. G., Prellberg T., “On the number of walks in a triangular domain”, Electron. J. Combin., 22 (2015), 1.64, 15 pp., arXiv: 1402.4448 | MR | Zbl
[25] Povolotsky A. M., “Bethe ansatz solution of zero-range process with nonuniform stationary state”, Phys. Rev. E, 69 (2004), 061109, 7 pp., arXiv: cond-mat/0401249 | DOI | MR
[26] Povolotsky A. M., “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI | MR | Zbl
[27] Povolotsky A. M., Mendes J. F. F., “Bethe ansatz solution of discrete time stochastic processes with fully parallel update”, J. Stat. Phys., 123 (2006), 125–166, arXiv: cond-mat/0411558 | DOI | MR | Zbl
[28] Romanelli A., Donangelo R., Portugal R., Marquezino F. L., “Thermodynamics of $N$-dimensional quantum walks”, Phys. Rev. A, 90 (2014), 022329, 9 pp., arXiv: 1408.5300 | DOI
[29] Salberger O., Korepin V., Fredkin spin chain, arXiv: 1605.03842
[30] Spitzer F., “Interaction of Markov processes”, Adv. Math., 5 (1970), 246–290 | DOI | MR | Zbl
[31] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1996 | DOI | MR
[32] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl