@article{SIGMA_2017_13_a54,
author = {Melike I\v{s}im Efe and Ender Abado\u{g}lu},
title = {Global {Existence} of {Bi-Hamiltonian} {Structures} on {Orientable} {Three-Dimensional} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a54/}
}
TY - JOUR AU - Melike Išim Efe AU - Ender Abadoğlu TI - Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a54/ LA - en ID - SIGMA_2017_13_a54 ER -
%0 Journal Article %A Melike Išim Efe %A Ender Abadoğlu %T Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a54/ %G en %F SIGMA_2017_13_a54
Melike Išim Efe; Ender Abadoğlu. Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a54/
[1] Asuke T., “A remark on the Bott class”, Ann. Fac. Sci. Toulouse Math., 10 (2001), 5–21 | DOI | MR | Zbl
[2] Bott R., “Lectures on characteristic classes and foliations”, Lectures on Algebraic and Differential Topology, Second Latin American School in Math. (Mexico City, 1971), Lecture Notes in Math., 279, Springer, Berlin, 1972, 1–94 | DOI | MR
[3] Dibag I., “Decomposition in the large of two-forms of constant rank”, Ann. Inst. Fourier (Grenoble), 24 (1974), 317–335 | DOI | MR | Zbl
[4] Gümral H., Nutku Y., “Poisson structure of dynamical systems with three degrees of freedom”, J. Math. Phys., 34 (1993), 5691–5723 | DOI | MR | Zbl
[5] Haas F., Goedert J., “On the generalized Hamiltonian structure of $3$D dynamical systems”, Phys. Lett. A, 199 (1995), 173–179, arXiv: math-ph/0211035 | DOI | MR | Zbl
[6] Hernández-Bermejo B., “New solutions of the Jacobi equations for three-dimensional Poisson structures”, J. Math. Phys., 42 (2001), 4984–4996 | DOI | MR | Zbl
[7] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[8] Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, Heidelberg, 2013 | DOI | MR
[9] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[10] Olver P. J., “Canonical forms and integrability of bi-Hamiltonian systems”, Phys. Lett. A, 148 (1990), 177–187 | DOI | MR
[11] Santoprete M., “On the relationship between two notions of compatibility for bi-Hamiltonian systems”, SIGMA, 11 (2015), 089, 11 pp., arXiv: 1506.08675 | DOI | MR | Zbl
[12] Stiefel E., “Richtungsfelder und Fernparallelismus in $n$-dimensionalen Mannigfaltigkeiten”, Comment. Math. Helv., 8 (1935), 305–353 | DOI | MR
[13] Weinstein A., “The local structure of Poisson manifolds”, J. Differential Geom., 18 (1983), 523–557 | DOI | MR | Zbl