Symmetries of the Hirota Difference Equation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as “times” of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented.
Keywords: Hirota difference equation; symmetries; integrable differential-difference and differential equations; additional symmetries.
@article{SIGMA_2017_13_a52,
     author = {Andrei K. Pogrebkov},
     title = {Symmetries of the {Hirota} {Difference} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/}
}
TY  - JOUR
AU  - Andrei K. Pogrebkov
TI  - Symmetries of the Hirota Difference Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/
LA  - en
ID  - SIGMA_2017_13_a52
ER  - 
%0 Journal Article
%A Andrei K. Pogrebkov
%T Symmetries of the Hirota Difference Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/
%G en
%F SIGMA_2017_13_a52
Andrei K. Pogrebkov. Symmetries of the Hirota Difference Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/

[1] Bogdanov L. V., Konopelchenko B. G., “Generalized KP hierarchy: Möbius symmetry, symmetry constraints and Calogero–Moser system”, Phys. D, 152/153 (2001), 85–96, arXiv: solv-int/9912005 | DOI | MR | Zbl

[2] Boiti M., Pempinelli F., Pogrebkov A. K., “Cauchy–Jost function and hierarchy of integrable equations”, Theoret. and Math. Phys., 185 (2015), 1599–1613, arXiv: 1508.02229 | DOI | MR | Zbl

[3] Dryuma V. S., “Analytic solution of the two-dimensional Korteweg–de Vries (KdV) equation”, JETP Lett., 19 (1974), 387–388

[4] Fioravanti D., Nepomechie R. I., “An inhomogeneous Lax representation for the Hirota equation”, J. Phys. A: Math. Theor., 50 (2017), 054001, 14 pp., arXiv: 1609.06761 | DOI | MR | Zbl

[5] Grinevich P. G., Orlov A. Yu., “Virasoro action on Riemann surfaces, Grassmannians, $\det \overline\partial_J$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | DOI | MR

[6] Hirota R., “Nonlinear partial difference equations. II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR | Zbl

[7] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[8] Kadomtsev B. B., Petviashvili V. I., “On the stability of solitary waves in weakly dispersive media”, Sov. Phys. Dokl., 192 (1970), 539–541 | Zbl

[9] Krichever I., Wiegmann P., Zabrodin A., “Elliptic solutions to difference non-linear equations and related many-body problems”, Comm. Math. Phys., 193 (1998), 373–396, arXiv: hep-th/9704090 | DOI | MR | Zbl

[10] Orlov A.Yu., Shul'man E. I., “Additional symmetries of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 64 (1985), 862–866 | DOI | MR | Zbl

[11] Pogrebkov A. K., “On time evolutions associated with the nonstationary Schrödinger equation”, L.D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 239–255, arXiv: math-ph/9902014 | DOI | MR | Zbl

[12] Pogrebkov A. K., “Hirota difference equation and a commutator identity on an associative algebra”, St. Petersburg Math. J., 22 (2011), 473–483 | DOI | MR | Zbl

[13] Pogrebkov A. K., “Hirota difference equation: inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181 (2014), 1585–1598, arXiv: 1407.0677 | DOI | MR | Zbl

[14] Pogrebkov A. K., “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187 (2016), 823–834 | DOI | MR | Zbl

[15] Saito S., “Octahedral structure of the Hirota–Miwa equation”, J. Nonlinear Math. Phys., 19 (2012), 539–550 | MR

[16] Zabrodin A. V., “Hirota difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392, arXiv: solv-int/9704001 | DOI | MR

[17] Zabrodin A. V., “Bäcklund transformation for the Hirota difference equation, and the supersymmetric Bethe ansatz”, Theoret. and Math. Phys., 155 (2008), 567–584 | DOI | MR | Zbl

[18] Zakharov V. E., Manakov S. V., “Construction of multidimensional nonlinear integrable systems and their solutions”, Funct. Anal. Appl., 19 (1985), 89–101 | DOI | MR | Zbl

[19] Zakharov V. E., Shabat A. B., “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8 (1977), 226–235 | DOI | MR