@article{SIGMA_2017_13_a52,
author = {Andrei K. Pogrebkov},
title = {Symmetries of the {Hirota} {Difference} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/}
}
Andrei K. Pogrebkov. Symmetries of the Hirota Difference Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a52/
[1] Bogdanov L. V., Konopelchenko B. G., “Generalized KP hierarchy: Möbius symmetry, symmetry constraints and Calogero–Moser system”, Phys. D, 152/153 (2001), 85–96, arXiv: solv-int/9912005 | DOI | MR | Zbl
[2] Boiti M., Pempinelli F., Pogrebkov A. K., “Cauchy–Jost function and hierarchy of integrable equations”, Theoret. and Math. Phys., 185 (2015), 1599–1613, arXiv: 1508.02229 | DOI | MR | Zbl
[3] Dryuma V. S., “Analytic solution of the two-dimensional Korteweg–de Vries (KdV) equation”, JETP Lett., 19 (1974), 387–388
[4] Fioravanti D., Nepomechie R. I., “An inhomogeneous Lax representation for the Hirota equation”, J. Phys. A: Math. Theor., 50 (2017), 054001, 14 pp., arXiv: 1609.06761 | DOI | MR | Zbl
[5] Grinevich P. G., Orlov A. Yu., “Virasoro action on Riemann surfaces, Grassmannians, $\det \overline\partial_J$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | DOI | MR
[6] Hirota R., “Nonlinear partial difference equations. II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR | Zbl
[7] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR
[8] Kadomtsev B. B., Petviashvili V. I., “On the stability of solitary waves in weakly dispersive media”, Sov. Phys. Dokl., 192 (1970), 539–541 | Zbl
[9] Krichever I., Wiegmann P., Zabrodin A., “Elliptic solutions to difference non-linear equations and related many-body problems”, Comm. Math. Phys., 193 (1998), 373–396, arXiv: hep-th/9704090 | DOI | MR | Zbl
[10] Orlov A.Yu., Shul'man E. I., “Additional symmetries of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 64 (1985), 862–866 | DOI | MR | Zbl
[11] Pogrebkov A. K., “On time evolutions associated with the nonstationary Schrödinger equation”, L.D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 239–255, arXiv: math-ph/9902014 | DOI | MR | Zbl
[12] Pogrebkov A. K., “Hirota difference equation and a commutator identity on an associative algebra”, St. Petersburg Math. J., 22 (2011), 473–483 | DOI | MR | Zbl
[13] Pogrebkov A. K., “Hirota difference equation: inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181 (2014), 1585–1598, arXiv: 1407.0677 | DOI | MR | Zbl
[14] Pogrebkov A. K., “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187 (2016), 823–834 | DOI | MR | Zbl
[15] Saito S., “Octahedral structure of the Hirota–Miwa equation”, J. Nonlinear Math. Phys., 19 (2012), 539–550 | MR
[16] Zabrodin A. V., “Hirota difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392, arXiv: solv-int/9704001 | DOI | MR
[17] Zabrodin A. V., “Bäcklund transformation for the Hirota difference equation, and the supersymmetric Bethe ansatz”, Theoret. and Math. Phys., 155 (2008), 567–584 | DOI | MR | Zbl
[18] Zakharov V. E., Manakov S. V., “Construction of multidimensional nonlinear integrable systems and their solutions”, Funct. Anal. Appl., 19 (1985), 89–101 | DOI | MR | Zbl
[19] Zakharov V. E., Shabat A. B., “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8 (1977), 226–235 | DOI | MR