Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We recently introduced a class of ${\mathbb{Z}}_N$ graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In particular, we introduced a subclass, which we called “self-dual”. In this paper we discuss the continuous symmetries of these systems, their reductions and the relation of the latter to the Bogoyavlensky equation.
Keywords: discrete integrable system; Lax pair; symmetry; Bogoyavlensky system.
@article{SIGMA_2017_13_a50,
     author = {Allan P. Fordy and Pavlos Xenitidis},
     title = {Self-Dual {Systems,} their {Symmetries} and {Reductions} to the {Bogoyavlensky} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/}
}
TY  - JOUR
AU  - Allan P. Fordy
AU  - Pavlos Xenitidis
TI  - Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/
LA  - en
ID  - SIGMA_2017_13_a50
ER  - 
%0 Journal Article
%A Allan P. Fordy
%A Pavlos Xenitidis
%T Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/
%G en
%F SIGMA_2017_13_a50
Allan P. Fordy; Pavlos Xenitidis. Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/

[1] Bogoyavlensky O. I., “Integrable discretizations of the KdV equation”, Phys. Lett. A, 134 (1988), 34–38 | DOI | MR

[2] Fordy A. P., Xenitidis P., $\mathbb{Z}_N$ graded discrete Lax pairs and discrete integrable systems, arXiv: 1411.6059

[3] Fordy A. P., Xenitidis P., “${\mathbb Z}_N$ graded discrete Lax pairs and integrable difference equations”, J. Phys. A: Math. Theor., 50 (2017), 165205, 30 pp. | DOI | MR | Zbl

[4] Marì Beffa G., Wang J. P., “Hamiltonian evolutions of twisted polygons in ${\mathbb{RP}}^n$”, Nonlinearity, 26 (2013), 2515–2551, arXiv: 1207.6524 | DOI | MR | Zbl

[5] Mikhailov A. V., Xenitidis P., “Second order integrability conditions for difference equations: an integrable equation”, Lett. Math. Phys., 104 (2014), 431–450, arXiv: 1305.4347 | DOI | MR | Zbl

[6] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl