@article{SIGMA_2017_13_a50,
author = {Allan P. Fordy and Pavlos Xenitidis},
title = {Self-Dual {Systems,} their {Symmetries} and {Reductions} to the {Bogoyavlensky} {Lattice}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/}
}
TY - JOUR AU - Allan P. Fordy AU - Pavlos Xenitidis TI - Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/ LA - en ID - SIGMA_2017_13_a50 ER -
%0 Journal Article %A Allan P. Fordy %A Pavlos Xenitidis %T Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/ %G en %F SIGMA_2017_13_a50
Allan P. Fordy; Pavlos Xenitidis. Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a50/
[1] Bogoyavlensky O. I., “Integrable discretizations of the KdV equation”, Phys. Lett. A, 134 (1988), 34–38 | DOI | MR
[2] Fordy A. P., Xenitidis P., $\mathbb{Z}_N$ graded discrete Lax pairs and discrete integrable systems, arXiv: 1411.6059
[3] Fordy A. P., Xenitidis P., “${\mathbb Z}_N$ graded discrete Lax pairs and integrable difference equations”, J. Phys. A: Math. Theor., 50 (2017), 165205, 30 pp. | DOI | MR | Zbl
[4] Marì Beffa G., Wang J. P., “Hamiltonian evolutions of twisted polygons in ${\mathbb{RP}}^n$”, Nonlinearity, 26 (2013), 2515–2551, arXiv: 1207.6524 | DOI | MR | Zbl
[5] Mikhailov A. V., Xenitidis P., “Second order integrability conditions for difference equations: an integrable equation”, Lett. Math. Phys., 104 (2014), 431–450, arXiv: 1305.4347 | DOI | MR | Zbl
[6] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl