@article{SIGMA_2017_13_a49,
author = {Bohdana I. Hladysh and Aleksandr O. Prishlyak},
title = {Topology of {Functions} with {Isolated} {Critical} {Points} on the {Boundary} {of~a~2-Dimensional} {Manifold}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a49/}
}
TY - JOUR AU - Bohdana I. Hladysh AU - Aleksandr O. Prishlyak TI - Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a49/ LA - en ID - SIGMA_2017_13_a49 ER -
%0 Journal Article %A Bohdana I. Hladysh %A Aleksandr O. Prishlyak %T Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a49/ %G en %F SIGMA_2017_13_a49
Bohdana I. Hladysh; Aleksandr O. Prishlyak. Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a49/
[1] Bolsinov A. V., Fomenko A. T., Integrable {H}amiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004 | DOI | MR | Zbl
[2] Borodzik M., Némethi A., Ranicki A., “Morse theory for manifolds with boundary”, Algebr. Geom. Topol., 16 (2016), 971–1023, arXiv: 1207.3066 | DOI | MR | Zbl
[3] Conner P. E., Floyd E. E., Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, 33, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | DOI | MR | Zbl
[4] Hladysh B. I., Prishlyak A. O., “Functions with nondegenerate critical points on the boundary of a surface”, Ukrain. Math. J., 68 (2016), 29–40 | DOI | MR
[5] Iurchuk I. A., “Properties of a pseudo-harmonic function on closed domain”, Proc. Internat. Geom. Center, 7:4 (2014), 50–59 | DOI
[6] Kadubovskyi A. A., “Enumeration of topologically non-equivalent smooth minimal functions on closed surfaces”, Proceedings of Institute of Mathematics, Kyiv, 12:6 (2015), 105–145 | Zbl
[7] Kadubovskyi A. A., “On the number of topologically non-equivalent functions with one degenerated saddle critical point on two-dimensional sphere, II”, Proc. Internat. Geom. Center, 8:1 (2015), 47–62 | DOI
[8] Khruzin A., Enumeration of chord diagrams, arXiv: math.CO/0008209
[9] Kronrod A. S., “On functions of two variables”, Russian Math. Surveys, 5 (1950), 24–134 | MR | Zbl
[10] Lukova-Chuiko N. V., “Minimal function on 3-manifolds with boundary”, Proc. Internat. Geom. Center, 8:3–4 (2015), 46–52
[11] Lukova-Chuiko N. V., Prishlyak A. O., Prishlyak K. O., “M-functions on nonoriented surfaces”, J. Numer. Appl. Math., 2012, no. 2, 176–185
[12] Maksymenko S., Polulyakh E., “Foliations with all non-closed leaves on non-compact surfaces”, Methods Funct. Anal. Topology, 22 (2016), 266–282, arXiv: 1606.00045 | MR | Zbl
[13] Milnor J. W., Topology from the differentiable viewpoint, The University Press of Virginia, Charlottesville, Va., 1965 | MR | Zbl
[14] Prishlyak A. O., Topological properties of functions on two and three dimensional manifolds, Palmarium Academic Pablishing
[15] Prishlyak A. O., “Topological equivalence of smooth functions with isolated critical points on a closed surface”, Topology Appl., 119 (2002), 257–267, arXiv: math.GT/9912004 | DOI | MR | Zbl
[16] Reeb G., “Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 | MR | Zbl
[17] Sharko V. V., Functions on manifolds. Algebraic and topological aspects, Translations of Mathematical Monographs, 131, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[18] Stoimenow A., “On the number of chord diagrams”, Discrete Math., 218 (2000), 209–233 | DOI | MR | Zbl
[19] Vyatchaninova O. M., “Atoms and molecules of functions with isolated critical points on the boundary of 3-dimensional handlebody”, Proc. Internat. Geom. Center, 5:3–4 (2012), 15–23