On the Spectra of Real and Complex Lamé Operators
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Lamé operators of the form \begin{gather*} L = -\frac{d^2}{dx^2} + m(m+1)\omega^2\wp(\omega x+z_0), \end{gather*} with $m\in\mathbb{N}$ and $\omega$ a half-period of $\wp(z)$. For rectangular period lattices, we can choose $\omega$ and $z_0$ such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than $m$ gaps. In the first part of the paper, we prove that the opened gaps are precisely the first $m$ ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the $m=1$ case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the $m=2$ case, paying particular attention to the rhombic lattices.
Keywords: Lamé operators; finite-gap operators; spectral theory; non-self-adjoint operators.
@article{SIGMA_2017_13_a48,
     author = {William A. Haese-Hill and Martin A. Halln\"as and Alexander P. Veselov},
     title = {On the {Spectra} of {Real} and {Complex} {Lam\'e} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a48/}
}
TY  - JOUR
AU  - William A. Haese-Hill
AU  - Martin A. Hallnäs
AU  - Alexander P. Veselov
TI  - On the Spectra of Real and Complex Lamé Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a48/
LA  - en
ID  - SIGMA_2017_13_a48
ER  - 
%0 Journal Article
%A William A. Haese-Hill
%A Martin A. Hallnäs
%A Alexander P. Veselov
%T On the Spectra of Real and Complex Lamé Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a48/
%G en
%F SIGMA_2017_13_a48
William A. Haese-Hill; Martin A. Hallnäs; Alexander P. Veselov. On the Spectra of Real and Complex Lamé Operators. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a48/

[1] Batchenko V., Gesztesy F., “On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials”, J. Anal. Math., 95 (2005), 333–387, arXiv: math.SP/0312200 | DOI | MR | Zbl

[2] Belokolos E. D., Enolskii V. Z., “Reduction of Abelian functions and algebraically integrable systems. II”, J. Math. Sci., 108 (2002), 295–374 | DOI | MR | Zbl

[3] Birnir B., “Complex Hill's equation and the complex periodic Korteweg–de Vries equations”, Comm. Pure Appl. Math., 39 (1986), 1–49 | DOI | MR | Zbl

[4] Davies E. B., “Pseudo-spectra, the harmonic oscillator and complex resonances”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 585–599 | DOI | MR | Zbl

[5] Davies E. B., “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34 (2002), 513–532 | DOI | MR | Zbl

[6] Drazin P. G., Johnson R. S., Solitons: an introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl

[7] Dubrovin B. A., Matveev V. B., Novikov S. P., “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl

[8] Erdélyi A., “On Lamé functions”, Philos. Mag., 31 (1941), 123–130 | DOI | MR

[9] Gesztesy F., Weikard R., “Floquet theory revisited”, Differential Equations and Mathematical Physics (Birmingham, AL, 1994), Int. Press, Boston, MA, 1995, 67–84 | MR | Zbl

[10] Gesztesy F., Weikard R., “Picard potentials and Hill's equation on a torus”, Acta Math., 176 (1996), 73–107 | DOI | MR | Zbl

[11] Grosset M. P., Veselov A. P., “Elliptic Faulhaber polynomials and Lamé densities of states”, Int. Math. Res. Not., 2006 (2006), 62120, 31 pp., arXiv: math-ph/0508066 | DOI | MR | Zbl

[12] Grosset M. P., Veselov A. P., “Lamé equation, quantum Euler top and elliptic Bernoulli polynomials”, Proc. Edinb. Math. Soc., 51 (2008), 635–650, arXiv: math-ph/0508068 | DOI | MR | Zbl

[13] Hermite C., “Sur quelques applications des fonctions elliptique”, C. R. Acad. Sci. Paris, 85 (1877), 689–695; 728–732; 821–826

[14] Ince E. L., “Further investigations into the periodic Lamé functions”, Proc. Roy. Soc. Edinburgh, 60 (1940), 83–99 | DOI | MR

[15] Kramers H. A., Ittmann G. P., “Zur Quantelung des asymmetrischen Kreisels”, Z. Phys., 53 (1929), 553–565 | DOI | Zbl

[16] Kramers H. A., Ittmann G. P., “Zur Quantelung des asymmetrischen Kreisels. II”, Z. Phys., 58 (1929), 217–231 | DOI | Zbl

[17] Lamé G., “Sur les surfaces isothermes dans les corps homogènes en équilibre de température”, J. Math. Pures Appl., 2 (1837), 147–188

[18] Lax P. D., “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl

[19] Magnus W., Winkler S., Hill's equation, Interscience Tracts in Pure and Applied Mathematics, 20, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966 | MR

[20] Milnor J., Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, Princeton, N.J., 1963 | MR | Zbl

[21] Novikov S. P., “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8 (1974), 236–246 | DOI | MR | Zbl

[22] Olver F. W.J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC; Cambridge University Press, 2010 https://doi.org | MR

[23] Pastur L. A., Tkachenko V. A., “On the geometry of the spectrum of the one-dimensional Schrödinger operator with periodic complex-valued potential”, Math. Notes, 50 (1991), 1045–1050 | DOI | MR | Zbl

[24] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[25] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, 2nd ed., Academic Press, Inc., New York, 1980 | MR | Zbl

[26] Rofe-Beketov F. S., “On the spectrum of non-selfadjoint differential operators with periodic coefficients”, Soviet Math. Dokl., 4 (1963), 1563–1566 | MR

[27] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, Amer. Math. Soc., Providence, R.I., 1959 | MR | Zbl

[28] Takemura K., “Analytic continuation of eigenvalues of the Lamé operator”, J. Differential Equations, 228 (2006), 1–16, arXiv: math.CA/0311307 | DOI | MR | Zbl

[29] Tkachenko V. A., “Spectral analysis of the one-dimensional Schrödinger operator with periodic complex-valued potential”, Soviet Math. Dokl., 5 (1964), 413–415 | MR | Zbl

[30] Weikard R., “On Hill's equation with a singular complex-valued potential”, Proc. London Math. Soc., 76 (1998), 603–633 | DOI | MR | Zbl

[31] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl

[32] Zabrodin A., “On the spectral curve of the difference Lamé operator”, Int. Math. Res. Not., 1999 (1999), 589–614, arXiv: math.QA/9812161 | DOI | MR | Zbl