Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov–Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
Keywords: Gromov–Witten theory; GKM manifold; moduli space; equivariant cohomology; localization.
@article{SIGMA_2017_13_a47,
     author = {Chiu-Chu Melissa Liu and Artan Sheshmani},
     title = {Equivariant {Gromov{\textendash}Witten} {Invariants} of {Algebraic} {GKM} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a47/}
}
TY  - JOUR
AU  - Chiu-Chu Melissa Liu
AU  - Artan Sheshmani
TI  - Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a47/
LA  - en
ID  - SIGMA_2017_13_a47
ER  - 
%0 Journal Article
%A Chiu-Chu Melissa Liu
%A Artan Sheshmani
%T Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a47/
%G en
%F SIGMA_2017_13_a47
Chiu-Chu Melissa Liu; Artan Sheshmani. Equivariant Gromov–Witten Invariants of Algebraic GKM Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a47/

[1] Atiyah M. F., Bott R., “The moment map and equivariant cohomology”, Topology, 23 (1984), 1–28 | DOI | MR | Zbl

[2] Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011 | DOI | MR | Zbl

[3] Behrend K., “Localization and Gromov–Witten invariants”, Quantum Cohomology (Cetraro, 1997), Lecture Notes in Math., 1776, Springer, Berlin, 2002, 3–38 | DOI | MR | Zbl

[4] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR | Zbl

[5] Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85 (1996), 1–60, arXiv: alg-geom/9506023 | DOI | MR | Zbl

[6] Chen L., Li Y., Liu K., “Localization, Hurwitz numbers and the Witten conjecture”, Asian J. Math., 12 (2008), 511–518, arXiv: math.AG/0609263 | DOI | MR | Zbl

[7] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl

[8] Faber C., “Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians”, New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge University Press, Cambridge, 1999, 93–109, arXiv: alg-geom/9706006 | DOI | Zbl

[9] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131 (1998), 25–83 | DOI | MR | Zbl

[10] Graber T., Pandharipande R., “Localization of virtual classes”, Invent. Math., 135 (1999), 487–518, arXiv: alg-geom/9708001 | DOI | MR | Zbl

[11] Guillemin V., Zara C., “Equivariant de Rham theory and graphs”, Asian J. Math., 3 (1999), 49–76, arXiv: math.AG/9808135 | DOI | MR | Zbl

[12] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl

[13] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Clay Mathematics Monographs, 1, Amer. Math. Soc., Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003 | MR | Zbl

[14] Kazarian M., “KP hierarchy for Hodge integrals”, Adv. Math., 221 (2009), 1–21, arXiv: 0809.3263 | DOI | MR | Zbl

[15] Kazarian M. E., Lando S. K., J. Amer. Math. Soc., 20 (2007), An algebro-geometric proof of Witten's conjecture, arXiv: math.AG/0601760 | DOI | MR

[16] Kim Y.-S., Liu K., “Virasoro constraints and Hurwitz numbers through asymptotic analysis”, Pacific J. Math., 241 (2009), 275–284 | DOI | MR | Zbl

[17] Knudsen F. F., Mumford D., “The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div””, Math. Scand., 39 (1976), 19–55 | DOI | MR | Zbl

[18] Knudsen F. F., “The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$”, Math. Scand., 52 (1983), 161–199 | DOI | MR | Zbl

[19] Knudsen F. F., “The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic $0$”, Math. Scand., 52 (1983), 200–212 | DOI | MR | Zbl

[20] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[21] Kontsevich M., “Enumeration of rational curves via torus actions”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 335–368, arXiv: hep-th/9405035 | MR | Zbl

[22] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties”, J. Amer. Math. Soc., 11 (1998), 119–174, arXiv: alg-geom/9602007 | DOI | MR | Zbl

[23] Liu C.-C. M., “Localization in Gromov–Witten theory and orbifold Gromov–Witten theory”, Handbook of Moduli, v. II, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA, 2013, 353–425, arXiv: 1107.4712 | MR | Zbl

[24] Mirzakhani M., “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20 (2007), 1–23 | DOI | MR | Zbl

[25] Mulase M., Zhang N., “Polynomial recursion formula for linear Hodge integrals”, Commun. Number Theory Phys., 4 (2010), 267–293, arXiv: 0908.2267 | DOI | MR | Zbl

[26] Mumford D., “Towards an enumerative geometry of the moduli space of curves”, Arithmetic and Geometry, v. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, 271–328 | DOI | MR

[27] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz numbers, and matrix models”, Algebraic Geometry (Seattle, 2005), v. 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 325–414, arXiv: math.AG/0101147 | DOI | MR | Zbl

[28] Spielberg H., A formula for the Gromov–Witten invariants of toric varieties, Ph.D. Thesis, Université Louis Pasteur (Strasbourg I), Strasbourg, 1999 | DOI | MR | Zbl

[29] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243–310 | MR