The Malgrange Form and Fredholm Determinants
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann–Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function $\tau$ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of “integrable” type in the sense of Its–Izergin–Korepin–Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.
Keywords: Malgrange form; Fredholm determinants; tau function.
@article{SIGMA_2017_13_a45,
     author = {Marco Bertola},
     title = {The {Malgrange} {Form} and {Fredholm} {Determinants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a45/}
}
TY  - JOUR
AU  - Marco Bertola
TI  - The Malgrange Form and Fredholm Determinants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a45/
LA  - en
ID  - SIGMA_2017_13_a45
ER  - 
%0 Journal Article
%A Marco Bertola
%T The Malgrange Form and Fredholm Determinants
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a45/
%G en
%F SIGMA_2017_13_a45
Marco Bertola. The Malgrange Form and Fredholm Determinants. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a45/

[1] Basor E. L., Widom H., “On a {T}oeplitz determinant identity of {B}orodin and {O}kounkov”, Integral Equations Operator Theory, 37 (2000), 397–401, arXiv: math.FA/9909010 | DOI | MR | Zbl

[2] Bertola M., “The dependence on the monodromy data of the isomonodromic tau function”, Comm. Math. Phys., 294 (2010), 539–579, arXiv: 0902.4716 | DOI | MR | Zbl

[3] Bertola M., Corrigendum: The dependence on the monodromy data of the isomonodromic tau function, arXiv: 1601.04790 | MR

[4] Bertola M., Cafasso M., “The transition between the gap probabilities from the Pearcey to the Airy process – a Riemann–Hilbert approach”, Int. Math. Res. Not., 2012 (2012), 1519–1568, arXiv: 1005.4083 | DOI | MR | Zbl

[5] Borodin A., Okounkov A., “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37 (2000), 386–396, arXiv: math.CA/9907165 | DOI | MR | Zbl

[6] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[7] Clancey K. F., Gohberg I., Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhäuser Verlag, Basel–Boston, Mass., 1981 | DOI | MR | Zbl

[8] Gantmacher F. R., The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959 | MR

[9] Gavrylenko P., Lisovyy O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, arXiv: 1608.00958

[10] Harnad J., Its A. R., “Integrable Fredholm operators and dual isomonodromic deformations”, Comm. Math. Phys., 226 (2002), 497–530, arXiv: solv-int/9706002 | DOI | MR | Zbl

[11] Its A., Lisovyy O., Prokhorov A., Monodromy dependence and connection formulae for isomonodromic tau functions, arXiv: 1604.03082

[12] Its A., Lisovyy O., Tykhyy Yu., “Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks”, Int. Math. Res. Not., 2015 (2015), 8903–8924, arXiv: 1403.1235 | DOI | MR | Zbl

[13] Its A. R., Izergin A. G., Korepin V. E., Slavnov N. A., “Differential equations for quantum correlation functions”, Internat. J. Modern Phys. B, 4 (1990), 1003–1037 | DOI | MR | Zbl

[14] Malgrange B., “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR

[15] Malgrange B., “Déformations isomonodromiques, forme de Liouville, fonction $\tau$”, Ann. Inst. Fourier (Grenoble), 54 (2004), 1371–1392 | DOI | MR | Zbl