@article{SIGMA_2017_13_a44,
author = {Charles F. Doran and Andrew Harder and Alan Thompson},
title = {Hodge {Numbers} from {Picard{\textendash}Fuchs} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a44/}
}
Charles F. Doran; Andrew Harder; Alan Thompson. Hodge Numbers from Picard–Fuchs Equations. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a44/
[1] Brav C., Thomas H., “Thin monodromy in Sp(4)”, Compos. Math., 150 (2014), 333–343, arXiv: 1210.0523 | DOI | MR | Zbl
[2] Cox D. A., Zucker S., “Intersection numbers of sections of elliptic surfaces”, Invent. Math., 53 (1979), 1–44 | DOI | MR | Zbl
[3] Del Angel P. L., Müller-Stach S., Van Straten D., Zuo K., “Hodge classes associated to 1-parameter families of Calabi–Yau 3-folds”, Acta Math. Vietnam., 35 (2010), 7–22, arXiv: 0911.0277 | MR | Zbl
[4] Deligne P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin–New York, 1970 | DOI | MR
[5] Doran B., Doran C. F., Harder A., “Picard–Fuchs uniformization of modular subvarieties”, Uniformization, Riemann–Hilbert Correspondence, Calabi–Yau Manifolds, and Picard–Fuchs Equations, eds. L. Ji, S.-T. Yau, Institut Mittag-Leffler, 2017 (to appear)
[6] Doran C. F., “Picard–Fuchs uniformization: modularity of the mirror map and mirror-moonshine”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), CRM Proc. Lecture Notes, 24, Amer. Math. Soc., Providence, RI, 2000, 257–281, arXiv: math.AG/9812162 | DOI | MR | Zbl
[7] Doran C. F., Harder A., Novoseltsev A. Y., Thompson A., “Families of lattice polarized K3 surfaces with monodromy”, Int. Math. Res. Not., 2015 (2015), 12265–12318, arXiv: 1312.6434 | DOI | MR | Zbl
[8] Doran C. F., Harder A., Novoseltsev A. Y., Thompson A., “Calabi–Yau threefolds fibred by Kummer surfaces associated to products of elliptic curves”, String-Math 2014, Proc. Sympos. Pure Math., 93, Amer. Math. Soc., Providence, RI, 2016, 263–287, arXiv: 1501.04024 | MR | Zbl
[9] Doran C. F., Harder A., Novoseltsev A. Y., Thompson A., “Calabi–Yau threefolds fibred by mirror quartic K3 surfaces”, Adv. Math., 298 (2016), 369–392, arXiv: 1501.04019 | DOI | MR | Zbl
[10] Doran C. F., Harder A., Novoseltsev A. Y., Thompson A., Calabi–Yau threefolds fibred by high rank lattice Polarized K3 surfaces, arXiv: 1701.03279
[11] Doran C. F., Malmendier A., Calabi–Yau manifolds realizing symplectically rigid monodromy tuples, arXiv: 1503.07500
[12] Doran C. F., Morgan J. W., “Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, eds. J. D. Lewis, S.-T. Yau, N. Yui, Amer. Math. Soc., Providence, RI, 2006, 517–537, arXiv: math.AG/0505272 | DOI | MR | Zbl
[13] Eskin A., Kontsevich M., Moeller M., Zorich A., Lower bounds for Lyapunov exponents of flat bundles on curves, arXiv: 1609.01170
[14] Filip S., Families of K3 surfaces and Lyapunov exponents, arXiv: 1412.1779
[15] Fougeron C., Parabolic degrees and Lyapunov exponents for hypergeometric local systems, arXiv: 1701.08387
[16] Fujino O., “A canonical bundle formula for certain algebraic fiber spaces and its applications”, Nagoya Math. J., 172 (2003), 129–171 | DOI | MR | Zbl
[17] Green M., Griffiths P., Kerr M., “Some enumerative global properties of variations of Hodge structures”, Mosc. Math. J., 9 (2009), 469–530 | MR | Zbl
[18] Griffiths P. A., “Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties”, Amer. J. Math., 90 (1968), 568–626 | DOI | MR | Zbl
[19] Griffiths P. A., “Periods of integrals on algebraic manifolds. II. Local study of the period mapping”, Amer. J. Math., 90 (1968), 805–865 | DOI | MR | Zbl
[20] Griffiths P. A., “On the periods of certain rational integrals. I”, Ann. of Math., 90 (1969), 460–495 | DOI | MR | Zbl
[21] Griffiths P. A., “On the periods of certain rational integrals. II”, Ann. of Math., 90 (1969), 496–541 | DOI | MR | Zbl
[22] Griffiths P. A., “Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping”, Inst. Hautes Études Sci. Publ. Math., 38 (1970), 125–180 | DOI | MR | Zbl
[23] Hollborn H., Müller-Stach S., “Hodge numbers for the cohomology of Calabi–Yau type local systems”, Algebraic and Complex Geometry, Springer Proc. Math. Stat., 71, Springer, Cham, 2014, 225–240, arXiv: 1302.3047 | DOI | MR | Zbl
[24] Kappes A., “Lyapunov exponents of rank 2-variations of Hodge structures and modular embeddings”, Ann. Inst. Fourier (Grenoble), 64 (2014), 2037–2066, arXiv: 1303.1088 | DOI | MR | Zbl
[25] Miranda R., The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989 | MR | Zbl
[26] Morrison D. R., Walcher J., “D-branes and normal functions”, Adv. Theor. Math. Phys., 13 (2009), 553–598, arXiv: 0709.4028 | DOI | MR | Zbl
[27] Narumiya N., Shiga H., “The mirror map for a family of $K3$ surfaces induced from the simplest 3-dimensional reflexive polytope”, Proceedings on Moonshine and Related Topics (Montréal, QC, 1999), CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001, 139–161 | DOI | MR | Zbl
[28] Singh S., “Arithmeticity of four hypergeometric monodromy groups associated to Calabi–Yau threefolds”, Int. Math. Res. Not., 2015 (2015), 8874–8889, arXiv: 1308.4039 | DOI | MR | Zbl
[29] Singh S., Venkataramana T. N., “Arithmeticity of certain symplectic hypergeometric groups”, Duke Math. J., 163 (2014), 591–617, arXiv: 1208.6460 | DOI | MR | Zbl
[30] Walcher J., “Extended holomorphic anomaly and loop amplitudes in open topological string”, Nuclear Phys. B, 817 (2009), 167–207, arXiv: 0705.4098 | DOI | MR | Zbl
[31] Zucker S., “Hodge theory with degenerating coefficients. $L_{2}$ cohomology in the Poincaré metric”, Ann. of Math., 109 (1979), 415–476 | DOI | MR | Zbl