Integrable Structure of Multispecies Zero Range Process
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic $R$ matrices of quantum affine algebra $U_q\big(A^{(1)}_n\big)$, matrix product construction of stationary states for periodic systems, $q$-boson representation of Zamolodchikov–Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of $R$ matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter.
Keywords: integrable zero range process; stochastic $R$ matrix; matrix product formula.
@article{SIGMA_2017_13_a43,
     author = {Atsuo Kuniba and Masato Okado and Satoshi Watanabe},
     title = {Integrable {Structure} of {Multispecies} {Zero} {Range} {Process}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a43/}
}
TY  - JOUR
AU  - Atsuo Kuniba
AU  - Masato Okado
AU  - Satoshi Watanabe
TI  - Integrable Structure of Multispecies Zero Range Process
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a43/
LA  - en
ID  - SIGMA_2017_13_a43
ER  - 
%0 Journal Article
%A Atsuo Kuniba
%A Masato Okado
%A Satoshi Watanabe
%T Integrable Structure of Multispecies Zero Range Process
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a43/
%G en
%F SIGMA_2017_13_a43
Atsuo Kuniba; Masato Okado; Satoshi Watanabe. Integrable Structure of Multispecies Zero Range Process. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a43/

[1] Alcaraz F. C., Lazo M. J., “Exact solutions of exactly integrable quantum chains by a matrix product ansatz”, J. Phys. A: Math. Gen., 37 (2004), 4149–4182, arXiv: cond-mat/0312373 | DOI | MR | Zbl

[2] Arita C., Kuniba A., Sakai K., Sawabe T., “Spectrum of a multi-species asymmetric simple exclusion process on a ring”, J. Phys. A: Math. Theor., 42 (2009), 345002, 41 pp., arXiv: 0904.1481 | DOI | MR | Zbl

[3] Baxter R. J., Exactly solved models in statistical mechanics, Dover Publications, Mineola, N.Y., 2007 | MR | Zbl

[4] Bazhanov V. V., Sergeev S. M., “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A: Math. Gen., 39 (2006), 3295–3310, arXiv: hep-th/0509181 | DOI | MR | Zbl

[5] Belitsky V., Schütz G. M., “Quantum algebra symmetry of the ASEP with second-class particles”, J. Stat. Phys., 161 (2015), 821–842, arXiv: 1504.06958 | DOI | MR | Zbl

[6] Blythe R. A., Evans M. R., “Nonequilibrium steady states of matrix-product form: a solver's guide”, J. Phys. A: Math. Theor., 40 (2007), R333–R441, arXiv: 0706.1678 | DOI | MR | Zbl

[7] Borodin A., Corwin I., Gorin V., “Stochastic six-vertex model”, Duke Math. J., 165 (2016), 563–624, arXiv: 1407.6729 | DOI | MR | Zbl

[8] Borodin A., Petrov L., Higher spin six vertex model and symmetric rational functions, arXiv: 1601.05770

[9] Bosnjak G., Mangazeev V. V., “Construction of $R$-matrices for symmetric tensor representations related to $U_q(\widehat{sl_n})$”, J. Phys. A: Math. Theor., 49 (2016), 495204, 19 pp., arXiv: 1607.07968 | DOI | MR | Zbl

[10] Cantini L., de Gier J., Wheeler M., “Matrix product formula for Macdonald polynomials”, J. Phys. A: Math. Theor., 48 (2015), 384001, 25 pp., arXiv: 1505.00287 | DOI | MR | Zbl

[11] Cantini L., Garbali A., de Gier J., Wheeler M., “Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries”, J. Phys. A: Math. Theor., 49 (2016), 444002, 23 pp., arXiv: 1607.00039 | DOI | MR | Zbl

[12] Corwin I., “The $q$-Hahn boson process and $q$-Hahn TASEP”, Int. Math. Res. Not., 2015 (2015), 5577–5603 | DOI | MR | Zbl

[13] Corwin I., Petrov L., “Stochastic higher spin vertex models on the line”, Comm. Math. Phys., 343 (2016), 651–700, arXiv: 1502.07374 | DOI | MR | Zbl

[14] Crampe N., Ragoucy E., Vanicat M., “Integrable approach to simple exclusion processes with boundaries. Review and progress”, J. Stat. Mech. Theory Exp., 2014, P11032, 42 pp., arXiv: 1408.5357 | DOI | MR

[15] Derrida B., Evans M. R., Hakim V., Pasquier V., “Exact solution of a $1$D asymmetric exclusion model using a matrix formulation”, J. Phys. A: Math. Gen., 26 (1993), 1493–1517 | DOI | MR | Zbl

[16] Evans M. R., Hanney T., “Nonequilibrium statistical mechanics of the zero-range process and related models”, J. Phys. A: Math. Gen., 38 (2005), R195–R240, arXiv: cond-mat/0501338 | DOI | MR | Zbl

[17] Evans M. R., Majumdar S. N., Zia R. K.P., “Factorized steady states in mass transport models”, J. Phys. A: Math. Gen., 37 (2004), L275–L280, arXiv: cond-mat/0406524 | DOI | MR | Zbl

[18] Faddeyev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR

[19] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[20] Garbali A., de Gier J., Wheeler M., “A new generalisation of Macdonald polynomials”, Comm. Math. Phys., 352 (2017), 773–804, arXiv: 1605.07200 | DOI | MR | Zbl

[21] Großkinsky S., Schütz G. M., Spohn H., “Condensation in the zero range process: stationary and dynamical properties”, J. Stat. Phys., 113 (2003), 389–410, arXiv: cond-mat/0302079 | DOI | MR | Zbl

[22] Gwa L.-H., Spohn H., “Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation”, Phys. Rev. A, 46 (1992), 844–854 | DOI

[23] Jimbo M., “A $q$-analogue of $U({\mathfrak g}{\mathfrak l}(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl

[24] Jimbo M. (ed.), Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Sci. Publ., Teaneck, NJ, 1990 | DOI | MR | Zbl

[25] Kapranov M. M., Voevodsky V. A., “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Amer. Math. Soc., Providence, RI, 1994, 177–259 | DOI | MR | Zbl

[26] Kipnis C., Landim C., Scaling limits of interacting particle systems, Grundlehren der Mathematischen Wissenschaften, 320, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[27] Kuan J., An algebraic construction of duality functions for the stochastic $U_q(A_n^{(1)})$ vertex model and its degenerations, arXiv: 1701.04468 | MR

[28] Kulish P. P., Reshetikhin N. Yu., Sklyanin E. K., “Yang–Baxter equations and representation theory. I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[29] Kuniba A., Mangazeev V. V., Maruyama S., Okado M., “Stochastic $R$ matrix for $U_q(A_n^{(1)})$”, Nuclear Phys. B, 913 (2016), 248–277, arXiv: 1604.08304 | DOI | MR | Zbl

[30] Kuniba A., Maruyama S., Okado M., “Multispecies TASEP and the tetrahedron equation”, J. Phys. A: Math. Theor., 49 (2016), 114001, 22 pp., arXiv: 1509.09018 | DOI | MR | Zbl

[31] Kuniba A., Maruyama S., Okado M., “Multispecies totally asymmetric zero range process: I. Multiline process and combinatorial $R$”, J. Integrable Syst., 1 (2016), xyw002, 30 pp., arXiv: 1511.09168 | DOI | MR

[32] Kuniba A., Maruyama S., Okado M., “Multispecies totally asymmetric zero range process: II. Hat relation and tetrahedron equation”, J. Integrable Syst., 1 (2016), xyw008, 20 pp., arXiv: 1602.04574 | DOI | MR

[33] Kuniba A., Okado M., “Tetrahedron equation and quantum $R$ matrices for $q$-oscillator representations of $U_q(A^{(2)}_{2n})$, $U_q(C^{(1)}_n)$ and $U_q(D^{(2)}_{n+1})$”, Comm. Math. Phys., 334 (2015), 1219–1244, arXiv: 1311.4258 | DOI | MR | Zbl

[34] Kuniba A., Okado M., “Matrix product formula for $U_q(A^{(1)}_2)$-zero range process”, J. Phys. A: Math. Theor., 50 (2017), 044001, 20 pp., arXiv: 1608.02779 | DOI | MR | Zbl

[35] Kuniba A., Okado M., “A $q$-boson representation of Zamolodchikov–Faddeev algebra for stochastic $R$ matrix of $U_q\big(A^{(1)}_n\big)$”, Lett. Math. Phys., 107 (2017), 1111–1130, arXiv: 1610.00531 | DOI | MR

[36] Kuniba A., Okado M., Sergeev S., “Tetrahedron equation and generalized quantum groups”, J. Phys. A: Math. Theor., 48 (2015), 304001, 38 pp., arXiv: 1503.08536 | DOI | MR | Zbl

[37] Machida S., Quantized superalgebras and generalized quantum groups, Master Thesis, Osaka City University, 2017

[38] Motegi K., Sakai K., “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201, 26 pp., arXiv: 1305.3030 | DOI | MR | Zbl

[39] Povolotsky A. M., “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI | MR | Zbl

[40] Prolhac S., Evans M. R., Mallick K., “The matrix product solution of the multispecies partially asymmetric exclusion process”, J. Phys. A: Math. Theor., 42 (2009), 165004, 25 pp., arXiv: 0812.3293 | DOI | MR | Zbl

[41] Sasamoto T., Wadati M., “Stationary state of integrable systems in matrix product form”, J. Phys. Soc. Japan, 66 (1997), 2618–2627 | DOI | MR | Zbl

[42] Sasamoto T., Wadati M., “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31 (1998), 6057–6071 | DOI | MR | Zbl

[43] Sergeev S. M., “Classical integrable field theories in discrete $(2+1)$-dimensional spacetime”, J. Phys. A: Math. Theor., 42 (2009), 295206, 19 pp., arXiv: 0902.4265 | DOI | MR | Zbl

[44] Spitzer F., “Interaction of Markov processes”, Adv. Math., 5 (1970), 246–290 | DOI | MR | Zbl

[45] Takeyama Y., “A deformation of affine Hecke algebra and integrable stochastic particle system”, J. Phys. A: Math. Theor., 47 (2014), 465203, 19 pp., arXiv: 1407.1960 | DOI | MR | Zbl

[46] Takeyama Y., Algebraic construction of multi-species $q$-Boson system, arXiv: 1507.02033

[47] Tracy C. A., Widom H., “On the asymmetric simple exclusion process with multiple species”, J. Stat. Phys., 150 (2013), 457–470, arXiv: 1105.4906 | DOI | MR | Zbl

[48] Yamane H., “On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras”, Publ. Res. Inst. Math. Sci., 35 (1999), 321–390, arXiv: q-alg/9603015 | DOI | MR | Zbl

[49] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl

[50] Zamolodchikov A. B., “Tetrahedra equations and integrable systems in three-dimensional space”, Soviet Phys. JETP, 79 (1980), 641–664 | MR

[51] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120 (1979), 253–291 | DOI | MR