On the Equivalence of Module Categories over a Group-Theoretical Fusion Category
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${\mathcal C}$ to be equivalent. This concludes the classification of such module categories.
Keywords: fusion category; module category; group-theoretical fusion category.
@article{SIGMA_2017_13_a41,
     author = {Sonia Natale},
     title = {On the {Equivalence} of {Module} {Categories} over a {Group-Theoretical} {Fusion} {Category}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/}
}
TY  - JOUR
AU  - Sonia Natale
TI  - On the Equivalence of Module Categories over a Group-Theoretical Fusion Category
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/
LA  - en
ID  - SIGMA_2017_13_a41
ER  - 
%0 Journal Article
%A Sonia Natale
%T On the Equivalence of Module Categories over a Group-Theoretical Fusion Category
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/
%G en
%F SIGMA_2017_13_a41
Sonia Natale. On the Equivalence of Module Categories over a Group-Theoretical Fusion Category. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/

[1] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[2] Marshall I., Nikshych D., “On the Brauer–Picard groups of fusion categories”, Math. Z. (to appear) , arXiv: 1603.04318 | DOI

[3] Masuoka A., “Semisimple Hopf algebras of dimension $6$, $8$”, Israel J. Math., 92 (1995), 361–373 | DOI | MR | Zbl

[4] Masuoka A., “Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite dimension”, New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 195–214 | DOI | MR | Zbl

[5] Naidu D., “Crossed pointed categories and their equivariantizations”, Pacific J. Math., 247 (2010), 477–496, arXiv: 1111.5246 | DOI | MR | Zbl

[6] Natale S., “On group theoretical Hopf algebras and exact factorizations of finite groups”, J. Algebra, 270 (2003), 199–211, arXiv: math.QA/0208054 | DOI | MR | Zbl

[7] Nikshych D., “Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories”, Selecta Math. (N.S.), 14 (2008), 145–161, arXiv: 0712.0585 | DOI | MR | Zbl

[8] Ostrik V., “Module categories over the Drinfeld double of a finite group”, Int. Math. Res. Not., 2003 (2003), 1507–1520, arXiv: math.QA/0202130 | DOI | MR | Zbl

[9] Schauenburg P., “Hopf bimodules, coquasibialgebras, and an exact sequence of Kac”, Adv. Math., 165 (2002), 194–263 | DOI | MR | Zbl