@article{SIGMA_2017_13_a41,
author = {Sonia Natale},
title = {On the {Equivalence} of {Module} {Categories} over a {Group-Theoretical} {Fusion} {Category}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/}
}
Sonia Natale. On the Equivalence of Module Categories over a Group-Theoretical Fusion Category. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a41/
[1] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[2] Marshall I., Nikshych D., “On the Brauer–Picard groups of fusion categories”, Math. Z. (to appear) , arXiv: 1603.04318 | DOI
[3] Masuoka A., “Semisimple Hopf algebras of dimension $6$, $8$”, Israel J. Math., 92 (1995), 361–373 | DOI | MR | Zbl
[4] Masuoka A., “Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite dimension”, New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 195–214 | DOI | MR | Zbl
[5] Naidu D., “Crossed pointed categories and their equivariantizations”, Pacific J. Math., 247 (2010), 477–496, arXiv: 1111.5246 | DOI | MR | Zbl
[6] Natale S., “On group theoretical Hopf algebras and exact factorizations of finite groups”, J. Algebra, 270 (2003), 199–211, arXiv: math.QA/0208054 | DOI | MR | Zbl
[7] Nikshych D., “Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories”, Selecta Math. (N.S.), 14 (2008), 145–161, arXiv: 0712.0585 | DOI | MR | Zbl
[8] Ostrik V., “Module categories over the Drinfeld double of a finite group”, Int. Math. Res. Not., 2003 (2003), 1507–1520, arXiv: math.QA/0202130 | DOI | MR | Zbl
[9] Schauenburg P., “Hopf bimodules, coquasibialgebras, and an exact sequence of Kac”, Adv. Math., 165 (2002), 194–263 | DOI | MR | Zbl