Non-Commutative Vector Bundles for Non-Unital Algebras
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutative case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index.
Mots-clés : Hilbert module; vector bundle; multiplier module; Watatani index.
@article{SIGMA_2017_13_a40,
     author = {Adam Rennie and Aidan Sims},
     title = {Non-Commutative {Vector} {Bundles} for {Non-Unital} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a40/}
}
TY  - JOUR
AU  - Adam Rennie
AU  - Aidan Sims
TI  - Non-Commutative Vector Bundles for Non-Unital Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a40/
LA  - en
ID  - SIGMA_2017_13_a40
ER  - 
%0 Journal Article
%A Adam Rennie
%A Aidan Sims
%T Non-Commutative Vector Bundles for Non-Unital Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a40/
%G en
%F SIGMA_2017_13_a40
Adam Rennie; Aidan Sims. Non-Commutative Vector Bundles for Non-Unital Algebras. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a40/

[1] Arambašić L., Bakić D., “Frames and outer frames for {H}ilbert $C^*$-modules”, Linear Multilinear Algebra, 65 (2017), 381–431, arXiv: 1507.04101 | DOI | MR | Zbl

[2] Blecher D. P., Le Merdy C., Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs, Oxford Science Publications, 30, The Clarendon Press, Oxford University Press, Oxford, 2004 | DOI | MR

[3] Dixmier J., Douady A., “Champs continus d'espaces hilbertiens et de $C^{\ast}$-algèbres”, Bull. Soc. Math. France, 91 (1963), 227–284 | DOI | MR | Zbl

[4] Echterhoff S., Raeburn I., “Multipliers of imprimitivity bimodules and Morita equivalence of crossed products”, Math. Scand., 76 (1995), 289–309 | DOI | MR | Zbl

[5] Fell J. M.G., Doran R. S., Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles, v. 1, Pure and Applied Mathematics, 125, Basic representation theory of groups and algebras, Academic Press, Inc., Boston, MA, 1988 | MR

[6] Kajiwara T., Pinzari C., Watatani Y., “Jones index theory for Hilbert $C^*$-bimodules and its equivalence with conjugation theory”, J. Funct. Anal., 215 (2004), 1–49, arXiv: math.OA/0301259 | DOI | MR | Zbl

[7] Raeburn I., Thompson S. J., “Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules”, Proc. Amer. Math. Soc., 131 (2003), 1557–1564 | DOI | MR | Zbl

[8] Raeburn I., Williams D. P., Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, 60, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR

[9] Rennie A., “Smoothness and locality for nonunital spectral triples”, $K$-Theory, 28 (2003), 127–165 | DOI | MR | Zbl

[10] Rennie A., Robertson D., Sims A., “The extension class and KMS states for Cuntz–Pimsner algebras of some bi-Hilbertian bimodules”, J. Topol. Anal., 9 (2017), 297–327, arXiv: 1501.05363 | DOI | MR | Zbl

[11] Swan R. G., “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR | Zbl