Twistor Geometry of Null Foliations in Complex Euclidean Space
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathcal{Q}^n$, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing–Yano $2$-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
Keywords: twistor geometry; complex variables; foliations; spinors.
@article{SIGMA_2017_13_a4,
     author = {Arman Taghavi-Chabert},
     title = {Twistor {Geometry} of {Null} {Foliations} in {Complex} {Euclidean} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a4/}
}
TY  - JOUR
AU  - Arman Taghavi-Chabert
TI  - Twistor Geometry of Null Foliations in Complex Euclidean Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a4/
LA  - en
ID  - SIGMA_2017_13_a4
ER  - 
%0 Journal Article
%A Arman Taghavi-Chabert
%T Twistor Geometry of Null Foliations in Complex Euclidean Space
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a4/
%G en
%F SIGMA_2017_13_a4
Arman Taghavi-Chabert. Twistor Geometry of Null Foliations in Complex Euclidean Space. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a4/

[1] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl

[2] Baird P., Eastwood M., “CR geometry and conformal foliations”, Ann. Global Anal. Geom., 44 (2013), 73–90, arXiv: 1011.4717 | DOI | MR | Zbl

[3] Baird P., Wood J. C., “Bernstein theorems for harmonic morphisms from $R^3$ and $S^3$”, Math. Ann., 280 (1988), 579–603 | DOI | MR | Zbl

[4] Baird P., Wood J. C., Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003 | DOI | MR

[5] Baston R. J., Eastwood M. G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989 | MR

[6] Baum H., Juhl A., Conformal differential geometry. $Q$-curvature and conformal holonomy, Oberwolfach Seminars, 40, Birkhäuser Verlag, Basel, 2010 | DOI | MR | Zbl

[7] Budinich P., Trautman A., “Fock space description of simple spinors”, J. Math. Phys., 30 (1989), 2125–2131 | DOI | MR | Zbl

[8] Calderbank D. M. J., Pedersen H., “Selfdual spaces with complex structures, Einstein–Weyl geometry and geodesics”, Ann. Inst. Fourier (Grenoble), 50 (2000), 921–963, arXiv: math.DG/9911117 | DOI | MR | Zbl

[9] Čap A., Slovák J., Parabolic geometries, v. I, Mathematical Surveys and Monographs, 154, Background and general theory, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[10] Cartan E., The theory of spinors, Dover Publications, Inc., New York, 1981 | MR | Zbl

[11] Cox D., Flaherty E. J. (Jr.), “A conventional proof of Kerr's theorem”, Comm. Math. Phys., 47 (1976), 75–79 | DOI | MR | Zbl

[12] Curry S., Gover A. R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv: 1412.7559

[13] Doubrov B., Slovák J., “Inclusions between parabolic geometries”, Pure Appl. Math. Q, 6 (2010), 755–780, arXiv: 0807.3360 | DOI | MR | Zbl

[14] Eells J., Salamon S., “Twistorial construction of harmonic maps of surfaces into four-manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 589–640 | MR | Zbl

[15] Gover A. R., Šilhan J., “The conformal Killing equation on forms – prolongations and applications”, Differential Geom. Appl., 26 (2008), 244–266, arXiv: math.DG/0601751 | DOI | MR | Zbl

[16] Harnad J., Shnider S., “Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions”, J. Math. Phys., 33 (1992), 3197–3208 | DOI | MR | Zbl

[17] Harnad J., Shnider S., “Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces”, J. Math. Phys., 36 (1995), 1945–1970 | DOI | MR | Zbl

[18] Hitchin N. J., “Complex manifolds and Einstein's equations”, Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer, Berlin–New York, 1982, 73–99 | DOI | MR

[19] Hughston L. P., Hurd T. R., “A $C{\rm P}^{5}$ calculus for space-time fields”, Phys. Rep., 100 (1983), 273–326 | DOI | MR

[20] Hughston L. P., Mason L. J., “A generalised Kerr–Robinson theorem”, Classical Quantum Gravity, 5 (1988), 275–285 | DOI | MR | Zbl

[21] Jones P. E., Tod K. P., “Minitwistor spaces and Einstein–Weyl spaces”, Classical Quantum Gravity, 2 (1985), 565–577 | DOI | MR | Zbl

[22] Kerr R. P., “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett., 11 (1963), 237–238 | DOI | MR | Zbl

[23] Kerr R. P., Schild A., “Republication of: A new class of vacuum solutions of the Einstein field equations”, Gen. Relativity Gravitation, 41 (2009), 2485–2499 | DOI | MR | Zbl

[24] Kodaira K., “A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds”, Ann. of Math., 75 (1962), 146–162 | DOI | MR | Zbl

[25] LeBrun C. R., “${\cal H}$-space with a cosmological constant”, Proc. Roy. Soc. London Ser. A, 380 (1982), 171–185 | DOI | MR | Zbl

[26] Mason L., Taghavi-Chabert A., “Killing–Yano tensors and multi-Hermitian structures”, J. Geom. Phys., 60 (2010), 907–923, arXiv: 0805.3756 | DOI | MR | Zbl

[27] Nurowski P., “Construction of conjugate functions”, Ann. Global Anal. Geom., 37 (2010), 321–326, arXiv: math.DG/0605745 | DOI | MR | Zbl

[28] Onishchik A. L., “On compact Lie groups transitive on certain manifolds”, Soviet Math. Dokl., 1 (1960), 1288–1291 | MR

[29] Penrose R., “Twistor algebra”, J. Math. Phys., 8 (1967), 345–366 | DOI | MR | Zbl

[30] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl

[31] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR

[32] Salamon S., Viaclovsky J., “Orthogonal complex structures on domains in ${\mathbb R}^4$”, Math. Ann., 343 (2009), 853–899, arXiv: 0704.3422 | DOI | MR | Zbl

[33] Taghavi-Chabert A., “The complex Goldberg–Sachs theorem in higher dimensions”, J. Geom. Phys., 62 (2012), 981–1012, arXiv: 1107.2283 | DOI | MR | Zbl

[34] Taghavi-Chabert A., “Pure spinors, intrinsic torsion and curvature in even dimensions”, Differential Geom. Appl., 46 (2016), 164–203, arXiv: 1212.3595 | DOI | MR | Zbl

[35] Taghavi-Chabert A., Pure spinors, intrinsic torsion and curvature in odd dimensions, arXiv: 1304.1076

[36] Tod K. P., “Harmonic morphisms and mini-twistor space”, Further Advances in Twistor Theory, v. II, Pitman Research Notes in Mathematics Series, 232, Integrable Systems, Conformal Geometry and Gravitation, eds. L. J. Mason, L. P. Hughston, P. Z. Kobak, Longman Scientific Technical, Harlow, 1995, 45–46

[37] Tod K. P., “More on harmonic morphisms”, Further Advances in Twistor Theory, v. II, Pitman Research Notes in Mathematics Series, 232, Integrable Systems, Conformal Geometry and Gravitation, eds. L. J. Mason, L. P. Hughston, P. Z. Kobak, Longman Scientific Technical, Harlow, 1995, 47–48