@article{SIGMA_2017_13_a39,
author = {Charles F. Dunkl},
title = {A {Linear} {System} of {Differential} {Equations} {Related} to {Vector-Valued} {Jack} {Polynomials} on the {Torus}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a39/}
}
TY - JOUR AU - Charles F. Dunkl TI - A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a39/ LA - en ID - SIGMA_2017_13_a39 ER -
Charles F. Dunkl. A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a39/
[1] Beerends R. J., Opdam E. M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–609 | DOI | MR | Zbl
[2] Dunkl C. F., “Symmetric and antisymmetric vector-valued {J}ack polynomials”, Sém. Lothar. Combin., 64 (2010), B64a, 31 pp., arXiv: 1001.4485 | MR | Zbl
[3] Dunkl C. F., “Orthogonality measure on the torus for vector-valued {J}ack polynomials”, SIGMA, 12 (2016), 033, 27 pp., arXiv: 1511.06721 | DOI | MR | Zbl
[4] Dunkl C. F., “Vector-valued Jack polynomials and wavefunctions on the torus”, J. Phys. A: Math. Theor., 50 (2017), 245201, 21 pp., arXiv: 1702.02109 | DOI
[5] Dunkl C. F., Luque J. G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl
[6] Felder G., Veselov A. P., “Polynomial solutions of the Knizhnik–Zamolodchikov equations and Schur–Weyl duality”, Int. Math. Res. Not., 2007 (2007), rnm046, 21 pp., arXiv: math.RT/0610383 | DOI | MR | Zbl
[7] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[8] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR | Zbl
[9] Opdam E. M., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl
[10] Stembridge J. R., “On the eigenvalues of representations of reflection groups and wreath products”, Pacific J. Math., 140 (1989), 353–396 | DOI | MR | Zbl
[11] Stoer J., Bulirsch R., Introduction to numerical analysis, Springer-Verlag, New York–Heidelberg, 1980 | DOI | MR | Zbl