Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a mathematically rigorous path integral representation of the time evolution operator for a model of (1+1) quantum gravity that incorporates factor ordering ambiguity. In obtaining a suitable integral kernel for the time-evolution operator, one requires that the corresponding Hamiltonian is self-adjoint; this issue is subtle for a particular category of factor orderings. We identify and parametrize a complete set of self-adjoint extensions and provide a canonical description of these extensions in terms of boundary conditions. Moreover, we use Trotter-type product formulae to construct path-integral representations of time evolution.
Keywords: factor ordering in quantum gravity; path integrals in quantum gravity; singularity avoidance in quantum gravity; quantization on a half-line.
@article{SIGMA_2017_13_a38,
     author = {John Haga and Rachel Lash Maitra},
     title = {Factor {Ordering} and {Path} {Integral} {Measure} for {Quantum} {Gravity} in~(1+1) {Dimensions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a38/}
}
TY  - JOUR
AU  - John Haga
AU  - Rachel Lash Maitra
TI  - Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a38/
LA  - en
ID  - SIGMA_2017_13_a38
ER  - 
%0 Journal Article
%A John Haga
%A Rachel Lash Maitra
%T Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a38/
%G en
%F SIGMA_2017_13_a38
John Haga; Rachel Lash Maitra. Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a38/

[1] Ambjørn J., Glaser L., Sato Y., Watabiki Y., “2d {CDT} is 2{D} {H}ořava–{L}ifshitz quantum gravity”, Phys. Lett. B, 722 (2013), 172–175, arXiv: 1302.6359 | DOI | MR | Zbl

[2] Anderson E., “Relational motivation for conformal operator ordering in quantum cosmology”, Classical Quantum Gravity, 27 (2010), 045002, 18 pp., arXiv: 0905.3357 | DOI | MR | Zbl

[3] Clark T. E., Menikoff R., Sharp D. H., “Quantum mechanics on the half-line using path integrals”, Phys. Rev. D, 22 (1980), 3012–3016 | DOI | MR

[4] DeWitt B. S., “Dynamical theory in curved spaces. I. A review of the classical and quantum action principles”, Rev. Modern Phys., 29 (1957), 377–397 | DOI | MR | Zbl

[5] Exner P., Neidhardt H., Zagrebnov V. A., “Remarks on the {T}rotter–{K}ato product formula for unitary group”, Integral Equations Operator Theory, 69 (2011), 451–478 | DOI | MR | Zbl

[6] Farhi E., Gutmann S., “The functional integral on the half-line”, Internat. J. Modern Phys. A, 5 (1990), 3029–3051 | DOI | MR

[7] Faris W. G., Self-adjoint operators, Lecture Notes in Math., 433, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[8] Fülöp T., “Singular potentials in quantum mechanics and ambiguity in the self-adjoint {H}amiltonian”, SIGMA, 3 (2007), 107, 12 pp., arXiv: 0708.0866 | DOI | MR | Zbl

[9] Gaveau B., Schulman L. S., “Explicit time-dependent {S}chrödinger propagators”, J. Phys. A: Math. Gen., 19 (1986), 1833–1846 | DOI | MR | Zbl

[10] Gerhardt C., “Quantum cosmological {F}riedmann models with an initial singularity”, Classical Quantum Gravity, 26 (2009), 015001, 29 pp., arXiv: 0806.1769 | DOI | MR | Zbl

[11] Gitman D. M., Tyutin I. V., Voronov B. L., “Self-adjoint extensions and spectral analysis in the {C}alogero problem”, J. Phys. A: Math. Theor., 43 (2010), 145205, 34 pp., arXiv: 0903.5277 | DOI | MR | Zbl

[12] Gitman D. M., Tyutin I. V., Voronov B. L., Self-adjoint extensions in quantum mechanics. General theory and applications to Schrödinger and Dirac equations with singular potentials, Progress in Mathematical Physics, 62, Birkhäuser/Springer, New York, 2012 | DOI | MR | Zbl

[13] Gorbachuk V. I., Gorbachuk M. L., Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR | Zbl

[14] Hall B. C., Quantum theory for mathematicians, Graduate Texts in Mathematics, 267, Springer, New York, 2013 | DOI | MR | Zbl

[15] Halliwell J. J., “Derivation of the Wheeler–DeWitt equation from a path integral for minisuperspace models”, Phys. Rev. D, 38 (1988), 2468–2481 | DOI | MR

[16] Hartle J. B., Hawking S. W., “Wave function of the universe”, Phys. Rev. D, 28 (1983), 2960–2975 | DOI | MR

[17] Kiefer C., Can singularities be avoided in quantum cosmology?, Ann. Phys., 19 (2010), 211–218 | DOI | MR | Zbl

[18] Kleinert H., Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, 5th ed., World Sci. Publ., Hackensack, NJ, 2009 | DOI | MR | Zbl

[19] Kontoleon N., Wiltshire D. L., “Operator ordering and consistency of the wave function of the {U}niverse”, Phys. Rev. D, 59 (1999), 063513, 8 pp., arXiv: gr-qc/9807075 | DOI | MR

[20] Lax P. D., Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2002 | MR | Zbl

[21] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl

[22] Maitra R. L., Can causal dynamical triangulations probe factor-ordering issues?, Acta Phys. Polon. B Proc. Suppl., 2 (2009), 563–574, arXiv: 0910.2117

[23] Moss I., “Quantum cosmology and the self observing universe”, Ann. Inst. H. Poincaré Phys. Théor., 49 (1988), 341–349 | MR

[24] Nakayama R., “$2${D} quantum gravity in the proper-time gauge”, Phys. Lett. B, 325 (1994), 347–353, arXiv: hep-th/9312158 | DOI | MR

[25] Nelson E., “Feynman integrals and the Schrödinger equation”, J. Math. Phys., 5 (1964), 332–343 | DOI | MR | Zbl

[26] NIST digital library of mathematical functions, http://dlmf.nist.gov/

[27] Patel D., Rivera J., Maitra R. L., Propagators for 2d quantum gravity in proper-time gauge with varied factor ordering of the Hamiltonian operator, in preparation

[28] Polyakov A. M., “Quantum geometry of bosonic strings”, Phys. Lett. B, 103 (1981), 207–210 | DOI | MR

[29] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972 | MR | Zbl

[30] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975 | MR | Zbl

[31] Saloff-Coste L., “The heat kernel and its estimates”, Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, 405–436 | MR | Zbl

[32] Šteigl R., Hinterleitner F., “Factor ordering in standard quantum cosmology”, Classical Quantum Gravity, 23 (2006), 3879–3893, arXiv: gr-qc/0511149 | DOI | MR

[33] Teitelboim C., “Quantum mechanics of the gravitational field”, Phys. Rev. D, 25 (1982), 3159–3179 | DOI | MR

[34] Teitelboim C., “Proper-time gauge in the quantum theory of gravitation”, Phys. Rev. D, 28 (1983), 297–309 | DOI | MR

[35] Verlinde H., “Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space”, Nuclear Phys. B, 337 (1990), 652–680 | DOI | MR