@article{SIGMA_2017_13_a36,
author = {Hjalmar Rosengren},
title = {Gustafson{\textendash}Rakha-Type {Elliptic} {Hypergeometric} {Series}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a36/}
}
Hjalmar Rosengren. Gustafson–Rakha-Type Elliptic Hypergeometric Series. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a36/
[1] Bhatnagar G., “$D_n$ basic hypergeometric series”, Ramanujan J., 3 (1999), 175–203 | DOI | MR | Zbl
[2] Bhatnagar G., Schlosser M., “$C_n$ and $D_n$ very-well-poised ${}_{10}\phi_9$ transformations”, Constr. Approx., 14 (1998), 531–567 | DOI | MR | Zbl
[3] Coskun H., Gustafson R. A., “Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155, arXiv: math.CO/0412153 | DOI | MR | Zbl
[4] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities”, Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | MR
[5] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl
[6] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl
[7] Gustafson R. A., Rakha M. A., “$q$-beta integrals and multivariate basic hypergeometric series associated to root systems of type $A_m$”, Ann. Comb., 4 (2000), 347–373 | DOI | MR | Zbl
[8] Milne S. C., Newcomb J. W., “${\rm U}(n)$ very-well-poised $_{10}\phi_9$ transformations”, J. Comput. Appl. Math., 68 (1996), 239–285 | DOI | MR | Zbl
[9] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl
[10] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl
[11] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202, arXiv: math.CA/0101073 | DOI | MR | Zbl
[12] Rosengren H., “Elliptic hypergeometric series on root systems”, Adv. Math., 181 (2004), 417–447, arXiv: math.CA/0207046 | DOI | MR | Zbl
[13] Rosengren H., Schlosser M., “Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations”, Indag. Math., 14 (2003), 483–513, arXiv: math.CA/0304249 | DOI | MR | Zbl
[14] Rosengren H., Schlosser M., Multidimensional matrix inversions and elliptic hypergeometric series on root systems, in preparation
[15] Schlosser M., “A new multivariable $_6\psi_6$ summation formula”, Ramanujan J., 17 (2008), 305–319, arXiv: math.CA/0607122 | DOI | MR | Zbl
[16] Spiridonov V. P., “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2003), 929–967, arXiv: math.CA/0303205 | DOI | MR
[17] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometry of supersymmetric dualities”, Comm. Math. Phys., 304 (2011), 797–874, arXiv: 0910.5944 | DOI | MR | Zbl
[18] Spiridonov V. P., Warnaar S. O., “New multiple $_6\psi_6$ summation formulas and related conjectures”, Ramanujan J., 25 (2011), 319–342 | DOI | MR | Zbl
[19] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Int. Math. Res. Not., 2001 (2001), 1083–1110 | DOI | MR | Zbl
[20] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR | Zbl
[21] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, 4th ed., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl