Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.
Keywords: partial difference equations; integrability; reduction; Darboux transformation.
@article{SIGMA_2017_13_a35,
     author = {Ying Shi and Jonathan Nimmo and Junxiao Zhao},
     title = {Darboux and {Binary} {Darboux} {Transformations} for {Discrete} {Integrable} {Systems.} {II.~Discrete} {Potential} {mKdV} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/}
}
TY  - JOUR
AU  - Ying Shi
AU  - Jonathan Nimmo
AU  - Junxiao Zhao
TI  - Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/
LA  - en
ID  - SIGMA_2017_13_a35
ER  - 
%0 Journal Article
%A Ying Shi
%A Jonathan Nimmo
%A Junxiao Zhao
%T Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/
%G en
%F SIGMA_2017_13_a35
Ying Shi; Jonathan Nimmo; Junxiao Zhao. Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., Comm. Math. Phys., 233 (2003), Classification of integrable equations on quad-graphs. The consistency approach, arXiv: nlin.SI/0202024 | DOI | MR

[2] Atkinson J., Lobb S. B., Nijhoff F. W., “An integrable multicomponent quad-equation and its Lagrangian formulation”, Theoret. and Math. Phys., 173 (2012), 1644–1653, arXiv: 1204.5521 | DOI | MR | Zbl

[3] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl

[4] Bobenko A. I., Suris Yu. B., Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[5] Butler S., “Multidimensional inverse scattering of integrable lattice equations”, Nonlinearity, 25 (2012), 1613–1634, arXiv: 1201.4626 | DOI | MR | Zbl

[6] Butler S., Joshi N., “An inverse scattering transform for the lattice potential KdV equation”, Inverse Problems, 26 (2010), 115012, 28 pp., arXiv: 1111.4733 | DOI | MR | Zbl

[7] Doliwa A., “Non-commutative lattice-modified Gel'fand–Dikii systems”, J. Phys. A: Math. Theor., 46 (2013), 205202, 14 pp., arXiv: 1302.5594 | DOI | MR | Zbl

[8] Hietarinta J., Zhang D.-J., “Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42 (2009), 404006, 30 pp., arXiv: 0903.1717 | DOI | MR | Zbl

[9] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[10] Hirota R., “Discretization of the potential modified KdV equation”, J. Phys. Soc. Japan, 67 (1998), 2234–2236 | DOI | MR | Zbl

[11] Matveev V. B., “Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations. I”, Lett. Math. Phys., 3 (1979), 217–222 | DOI | MR | Zbl

[12] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[13] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl

[14] Nijhoff F., Atkinson J., Hietarinta J., “Soliton solutions for ABS lattice equations. I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42 (2009), 404005, 34 pp., arXiv: 0902.4873 | DOI | MR | Zbl

[15] Nijhoff F. W., Capel H. W., Wiersma G. L., Quispel G. R. W., “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105 (1984), 267–272 | DOI | MR

[16] Nijhoff F. W., Quispel G. R. W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR

[17] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl

[18] Nimmo J. J. C., “Darboux transformations and the discrete KP equation”, J. Phys. A: Math. Gen., 30 (1997), 8693–8704 | DOI | MR | Zbl

[19] Nimmo J. J. C., “Darboux transformations for discrete systems”, Chaos Solitons Fractals, 11 (2000), 115–120 | DOI | MR | Zbl

[20] Quispel G. R. W., Nijhoff F. W., Capel H. W., van der Linden J., “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR | Zbl

[21] Shi Y., Nimmo J. J. C., Zhang D.-J., “Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation”, J. Phys. A: Math. Theor., 47 (2014), 025205, 11 pp., arXiv: 1309.5512 | DOI | MR | Zbl