@article{SIGMA_2017_13_a35,
author = {Ying Shi and Jonathan Nimmo and Junxiao Zhao},
title = {Darboux and {Binary} {Darboux} {Transformations} for {Discrete} {Integrable} {Systems.} {II.~Discrete} {Potential} {mKdV} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/}
}
TY - JOUR AU - Ying Shi AU - Jonathan Nimmo AU - Junxiao Zhao TI - Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/ LA - en ID - SIGMA_2017_13_a35 ER -
%0 Journal Article %A Ying Shi %A Jonathan Nimmo %A Junxiao Zhao %T Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/ %G en %F SIGMA_2017_13_a35
Ying Shi; Jonathan Nimmo; Junxiao Zhao. Darboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a35/
[1] Adler V. E., Bobenko A. I., Suris Yu. B., Comm. Math. Phys., 233 (2003), Classification of integrable equations on quad-graphs. The consistency approach, arXiv: nlin.SI/0202024 | DOI | MR
[2] Atkinson J., Lobb S. B., Nijhoff F. W., “An integrable multicomponent quad-equation and its Lagrangian formulation”, Theoret. and Math. Phys., 173 (2012), 1644–1653, arXiv: 1204.5521 | DOI | MR | Zbl
[3] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl
[4] Bobenko A. I., Suris Yu. B., Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[5] Butler S., “Multidimensional inverse scattering of integrable lattice equations”, Nonlinearity, 25 (2012), 1613–1634, arXiv: 1201.4626 | DOI | MR | Zbl
[6] Butler S., Joshi N., “An inverse scattering transform for the lattice potential KdV equation”, Inverse Problems, 26 (2010), 115012, 28 pp., arXiv: 1111.4733 | DOI | MR | Zbl
[7] Doliwa A., “Non-commutative lattice-modified Gel'fand–Dikii systems”, J. Phys. A: Math. Theor., 46 (2013), 205202, 14 pp., arXiv: 1302.5594 | DOI | MR | Zbl
[8] Hietarinta J., Zhang D.-J., “Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42 (2009), 404006, 30 pp., arXiv: 0903.1717 | DOI | MR | Zbl
[9] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR
[10] Hirota R., “Discretization of the potential modified KdV equation”, J. Phys. Soc. Japan, 67 (1998), 2234–2236 | DOI | MR | Zbl
[11] Matveev V. B., “Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations. I”, Lett. Math. Phys., 3 (1979), 217–222 | DOI | MR | Zbl
[12] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[13] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl
[14] Nijhoff F., Atkinson J., Hietarinta J., “Soliton solutions for ABS lattice equations. I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42 (2009), 404005, 34 pp., arXiv: 0902.4873 | DOI | MR | Zbl
[15] Nijhoff F. W., Capel H. W., Wiersma G. L., Quispel G. R. W., “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105 (1984), 267–272 | DOI | MR
[16] Nijhoff F. W., Quispel G. R. W., Capel H. W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR
[17] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl
[18] Nimmo J. J. C., “Darboux transformations and the discrete KP equation”, J. Phys. A: Math. Gen., 30 (1997), 8693–8704 | DOI | MR | Zbl
[19] Nimmo J. J. C., “Darboux transformations for discrete systems”, Chaos Solitons Fractals, 11 (2000), 115–120 | DOI | MR | Zbl
[20] Quispel G. R. W., Nijhoff F. W., Capel H. W., van der Linden J., “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR | Zbl
[21] Shi Y., Nimmo J. J. C., Zhang D.-J., “Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation”, J. Phys. A: Math. Theor., 47 (2014), 025205, 11 pp., arXiv: 1309.5512 | DOI | MR | Zbl