@article{SIGMA_2017_13_a34,
author = {Jing Kang and Xiaochuan Liu and Peter J. Olver and Changzheng Qu},
title = {Liouville {Correspondences} between {Integrable} {Hierarchies}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a34/}
}
TY - JOUR AU - Jing Kang AU - Xiaochuan Liu AU - Peter J. Olver AU - Changzheng Qu TI - Liouville Correspondences between Integrable Hierarchies JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a34/ LA - en ID - SIGMA_2017_13_a34 ER -
%0 Journal Article %A Jing Kang %A Xiaochuan Liu %A Peter J. Olver %A Changzheng Qu %T Liouville Correspondences between Integrable Hierarchies %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a34/ %G en %F SIGMA_2017_13_a34
Jing Kang; Xiaochuan Liu; Peter J. Olver; Changzheng Qu. Liouville Correspondences between Integrable Hierarchies. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a34/
[1] Alber M. S., Camassa R., Holm D. D., Marsden J. E., “The geometry of peaked solitons and billiard solutions of a class of integrable PDEs”, Lett. Math. Phys., 32 (1994), 137–151 | DOI | MR | Zbl
[2] Babalic C. N., Constantinescu R., Gerdjikov V. S., “On the soliton solutions of a family of Tzitzeica equations”, J. Geom. Symmetry Phys., 37 (2015), 1–24, arXiv: 1703.05855 | DOI | MR | Zbl
[3] Beals R., Sattinger D. H., Szmigielski J., “Multipeakons and the classical moment problem”, Adv. Math., 154 (2000), 229–257, arXiv: solv-int/9906001 | DOI | MR | Zbl
[4] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl
[5] Camassa R., Holm D. D., Hyman J. M., “A new integrable shallow water equation”, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl
[6] Cao C., Holm D. D., Titi E. S., “Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models”, J. Dynam. Differential Equations, 16 (2004), 167–178 | DOI | MR | Zbl
[7] Caudrey P. J., Dodd R. K., Gibbon J. D., “A new hierarchy of Korteweg–de Vries equations”, Proc. Roy. Soc. London Ser. A, 351 (1976), 407–422 | DOI | MR | Zbl
[8] Chou K. S., Qu C. Z., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl
[9] Coclite G. M., Karlsen K. H., “Periodic solutions of the Degasperis–Procesi equation: well-posedness and asymptotics”, J. Funct. Anal., 268 (2015), 1053–1077 | DOI | MR | Zbl
[10] Constantin A., Escher J., “Wave breaking for nonlinear nonlocal shallow water equations”, Acta Math., 181 (1998), 229–243 | DOI | MR | Zbl
[11] Constantin A., Gerdjikov V. S., Ivanov R. I., “Inverse scattering transform for the Camassa–Holm equation”, Inverse Problems, 22 (2006), 2197–2207, arXiv: nlin.SI/0603019 | DOI | MR | Zbl
[12] Constantin A., Ivanov R., “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138 (2017), 205–226, arXiv: 1608.02120 | DOI | MR | Zbl
[13] Constantin A., Ivanov R. I., Lenells J., “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR | Zbl
[14] Constantin A., Lannes D., “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192 (2009), 165–186, arXiv: 0709.0905 | DOI | MR | Zbl
[15] Constantin A., McKean H. P., “A shallow water equation on the circle”, Comm. Pure Appl. Math., 52 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[16] Constantin A., Strauss W. A., “Stability of peakons”, Comm. Pure Appl. Math., 53 (2000), 603–610 | 3.3.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Degasperis A., Holm D. D., Hone A. N. W., “A new integrable equation with peakon solutions”, Theoret. and Math. Phys., 133 (2002), 1463–1474, arXiv: nlin.SI/0205023 | DOI | MR
[18] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23–37 | MR | Zbl
[19] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley Sons, Ltd., Chichester, 1993 | MR
[20] Dullin H. R., Gottwald G. A., Holm D. D., “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33 (2003), 73–95 | DOI | MR | Zbl
[21] Fokas A. S., Fuchssteiner B., “Bäcklund transformations for hereditary symmetries”, Nonlinear Anal., 5 (1981), 423–432 | DOI | MR | Zbl
[22] Fokas A. S., Olver P. J., Rosenau P., “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, 93–101 | DOI | MR | Zbl
[23] Fordy A. P., Gibbons J., “Some remarkable nonlinear transformations”, Phys. Lett. A, 75 (1980), 325 | DOI | MR
[24] Fuchssteiner B., “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95 (1996), 229–243 | DOI | MR | Zbl
[25] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[26] Fuchssteiner B., Oevel W., “The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covaria”, J. Math. Phys., 23 (1982), 358–363 | DOI | MR | Zbl
[27] Gerdjikov V. S., “On a Kaup–Kupershmidt-type equations and their soliton solutions”, Nuovo Cimento C, 38 (2015), 161, 19 pp., arXiv: 1703.05850 | DOI
[28] Gordoa P. R., Pickering A., “Nonisospectral scattering problems: a key to integrable hierarchies”, J. Math. Phys., 40 (1999), 5749–5786 | DOI | MR | Zbl
[29] Gui G. L., Liu Y., Olver P. J., Qu C. Z., “Wave-breaking and peakons for a modified Camassa–Holm equation”, Comm. Math. Phys., 319 (2013), 731–759 | DOI | MR | Zbl
[30] Himonas A. A., Holliman C., “The Cauchy problem for the Novikov equation”, Nonlinearity, 25 (2012), 449–479 | DOI | MR | Zbl
[31] Holm D. D., Ivanov R. I., “Smooth and peaked solitons of the CH equation”, J. Phys. A: Math. Theor., 43 (2010), 434003, 18 pp., arXiv: 1003.1338 | DOI | MR | Zbl
[32] Hone A. N. W., Lundmark H., Szmigielski J., “Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa–Holm type equation”, Dyn. Partial Differ. Equ., 6 (2009), 253–289, arXiv: 0903.3663 | DOI | MR | Zbl
[33] Hone A. N. W., Wang J. P., “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19 (2003), 129–145 | DOI | MR | Zbl
[34] Hone A. N. W., Wang J. P., “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41 (2008), 372002, 10 pp., arXiv: 0805.4310 | DOI | MR | Zbl
[35] Johnson R. S., “Camassa–Holm, Korteweg–de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR | Zbl
[36] Kang J., Liu X. C., Olver P. J., Qu C. Z., “Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy”, J. Nonlinear Sci., 26 (2016), 141–170 | DOI | MR | Zbl
[37] Kaup D. J., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_{x}+6R\psi =\lambda \psi $”, Stud. Appl. Math., 62 (1980), 189–216 | DOI | MR | Zbl
[38] Kouranbaeva S., “The Camassa–Holm equation as a geodesic flow on the diffeomorphism group”, J. Math. Phys., 40 (1999), 857–868, arXiv: math-ph/9807021 | DOI | MR | Zbl
[39] Kupershmidt B. A., “A super Korteweg–de Vries equation: an integrable system”, Phys. Lett. A, 102 (1984), 213–215 | DOI | MR
[40] Lenells J., “The correspondence between KdV and Camassa–Holm”, Int. Math. Res. Not., 2004 (2004), 3797–3811 | DOI | MR | Zbl
[41] Li Y. A., Olver P. J., “Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation”, J. Differential Equations, 162 (2000), 27–63 | DOI | MR | Zbl
[42] Li Y. Y., Qu C. Z., Shu S. C., “Integrable motions of curves in projective geometries”, J. Geom. Phys., 60 (2010), 972–985 | DOI | MR | Zbl
[43] Lin Z. W., Liu Y., “Stability of peakons for the Degasperis–Procesi equation”, Comm. Pure Appl. Math., 62 (2009), 125–146, arXiv: 0712.2007 | DOI | MR | Zbl
[44] Liu X. C., Liu Y., Qu C. Z., “Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation”, Adv. Math., 255 (2014), 1–37 | DOI | MR | Zbl
[45] Liu X. C., Liu Y., Qu C. Z., “Stability of peakons for the Novikov equation”, J. Math. Pures Appl., 101 (2014), 172–187 | DOI | MR | Zbl
[46] Liu Y., Yin Z., “Global existence and blow-up phenomena for the Degasperis–Procesi equation”, Comm. Math. Phys., 267 (2006), 801–820 | DOI | MR | Zbl
[47] Lundmark H., “Formation and dynamics of shock waves in the Degasperis–Procesi equation”, J. Nonlinear Sci., 17 (2007), 169–198 | DOI | MR | Zbl
[48] Lundmark H., Szmigielski J., “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19 (2003), 1241–1245, arXiv: nlin.SI/0503033 | DOI | MR | Zbl
[49] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[50] McKean H. P., “The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies”, Comm. Pure Appl. Math., 56 (2003), 998–1015 | DOI | MR | Zbl
[51] McKean H. P., “Breakdown of the Camassa–Holm equation”, Comm. Pure Appl. Math., 57 (2004), 416–418 | DOI | MR | Zbl
[52] Mikhailov A. V., “The reduction problem and the inverse scattering method”, Phys. D, 3 (1981), 73–117 | DOI | Zbl
[53] Milson R., “Liouville transformation and exactly solvable Schrödinger equations”, Internat. J. Theoret. Phys., 37 (1998), 1735–1752, arXiv: solv-int/9706007 | DOI | MR | Zbl
[54] Musso E., “Motions of curves in the projective plane inducing the Kaup–Kupershmidt hierarchy”, SIGMA, 8 (2012), 030, 20 pp., arXiv: 1205.5329 | DOI | MR | Zbl
[55] Novikov V., “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42 (2009), 342002, 14 pp., arXiv: 0905.2219 | DOI | MR | Zbl
[56] Olver F. W. J., Asymptotics and special functions, Academic Press, New York–London, 1974 | MR
[57] Olver P. J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl
[58] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[59] Olver P. J., “Invariant submanifold flows”, J. Phys. A: Math. Theor., 41 (2008), 344017, 22 pp. | DOI | MR | Zbl
[60] Olver P. J., Rosenau P., “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53 (1996), 1900–1906 | DOI | MR
[61] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[62] Sawada K., Kotera T., “A method for finding $N$-soliton solutions of the K.d.V. equation and K.d.V.-like equation”, Progr. Theoret. Phys., 51 (1974), 1355–1367 | DOI | MR | Zbl
[63] Tiğlay F., “The periodic Cauchy problem for Novikov's equation”, Int. Math. Res. Not., 2011 (2011), 4633–4648, arXiv: 1009.1820 | DOI
[64] Valchev T., “On generalized Fourier transform for Kaup-Kupershmidt type equations”, J. Geom. Symmetry Phys., 19 (2010), 73–86 | DOI | MR | Zbl