@article{SIGMA_2017_13_a33,
author = {Sergey Ya. Startsev},
title = {Formal {Integrals} and {Noether} {Operators} of {Nonlinear} {Hyperbolic} {Partial} {Differential} {Systems} {Admitting} a {Rich} {Set} of {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a33/}
}
TY - JOUR AU - Sergey Ya. Startsev TI - Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a33/ LA - en ID - SIGMA_2017_13_a33 ER -
%0 Journal Article %A Sergey Ya. Startsev %T Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a33/ %G en %F SIGMA_2017_13_a33
Sergey Ya. Startsev. Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a33/
[1] Anco S. C., Bluman G., “Direct construction of conservation laws from field equations”, Phys. Rev. Lett., 78 (1997), 2869–2873 | DOI | MR | Zbl
[2] Anco S. C., Bluman G., “Direct construction method for conservation laws of partial differential equations. II. General treatment”, European J. Appl. Math., 13 (2002), 567–585, arXiv: math-ph/0108024 | DOI | MR | Zbl
[3] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87 (1997), 265–319 | DOI | MR | Zbl
[4] Demskoi D. K., “On a class of Liouville-type systems”, Theoret. and Math. Phys., 141 (2004), 1509–1527 | DOI | MR | Zbl
[5] Demskoi D. K., Sokolov V. V., “On recursion operators for elliptic models”, Nonlinearity, 21 (2008), 1253–1264, arXiv: nlin.SI/0607071 | DOI | MR | Zbl
[6] Demskoi D. K., Startsev S. Ya., “On the construction of symmetries from integrals of hyperbolic systems of equations”, J. Math. Sci., 136 (2006), 4378–4384 | DOI | MR
[7] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[8] Goursat E., “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 1 (1899), 31–78 | MR | Zbl
[9] Gubbiotti G., Levi D., Scimiterna C., “On partial differential and difference equations with symmetries depending on arbitrary functions”, Acta Polytechnica, 56 (2016), 193–201, arXiv: 1512.01967 | DOI
[10] Guryeva A. M., Zhiber A. V., “On the characteristic equations of a system of quasilinear hyperbolic equations”, Vestnik UGATU, 6:2 (2005), 26–34
[11] Juráš M., Anderson I. M., “Generalized {L}aplace invariants and the method of Darboux”, Duke Math. J., 89 (1997), 351–375 | DOI | MR | Zbl
[12] Kiselev A. V., “Algebraic properties of Gardner deformations of integrable systems”, Theoret. and Math. Phys., 152 (2007), 963–976, arXiv: nlin.SI/0610072 | DOI | MR | Zbl
[13] Kiselev A. V., van de Leur J. W., “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162 (2010), 149–162, arXiv: 0902.3624 | DOI | MR | Zbl
[14] Kupershmidt B. A., Wilson G., “Modifying Lax equations and the second Hamiltonian structure”, Invent. Math., 62 (1981), 403–436 | DOI | MR | Zbl
[15] Kuznetsova M. N., Pekcan A., Zhiber A. V., “The Klein–Gordon equation and differential substitutions of the form $v=\phi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp., arXiv: 1111.7255 | DOI | MR | Zbl
[16] Leznov A. N., Shabat A. B., “Truncation conditions for perturbation theory series”, Integrable Systems, Bashkir Branch, Acad. Sci. USSR, Ufa, 1982, 34–45
[17] Leznov A. N., Smirnov V. G., Shabat A. B., “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theoret. and Math. Phys., 51 (1982), 322–330 | DOI | MR | Zbl
[18] Meshkov A. G., Sokolov V. V., “Hyperbolic equations with third-order symmetries”, Theoret. and Math. Phys., 166 (2011), 43–57, arXiv: 0912.5092 | DOI | MR | Zbl
[19] Mikhailov A. V., Shabat A. B., Yamilov R. I., “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russ. Math. Surv., 42:4 (1987), 1–63 | DOI | MR
[20] Mokhov O. I., “Symplectic forms on the space of loops and Riemannian geometry”, Funct. Anal. Appl., 24 (1990), 247–249 | DOI | MR | Zbl
[21] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[22] Sakovich S. Yu., J. Phys. A: Math. Gen., 27 (1994), On conservation laws and zero-curvature representations of the Liouville equation | DOI | MR
[23] Sarlet W., Cantrijn F., Crampin M., “Pseudosymmetries, Noether's theorem and the adjoint equation”, J. Phys. A: Math. Gen., 20 (1987), 1365–1376 | DOI | MR | Zbl
[24] Sergyeyev A., Vitolo R., “Symmetries and conservation laws for the Karczewska–Rozmej–Rutkowski–Infeld equation”, Nonlinear Anal. Real World Appl., 32 (2016), 1–9, arXiv: 1511.03975 | DOI | MR | Zbl
[25] Sokolov V. V., “On the symmetries of evolution equations”, Russ. Math. Surv., 43:5 (1988), 165–204 | DOI | MR | Zbl
[26] Sokolov V. V., Startsev S. Ya., “Symmetries of nonlinear hyperbolic systems of the Toda chain type”, Theoret. and Math. Phys., 155 (2008), 802–811 | DOI | MR | Zbl
[27] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl
[28] Startsev S. Ya., “Differential substitutions of the Miura transformation type”, Theoret. and Math. Phys., 116 (1998), 1001–1010 | DOI | MR | Zbl
[29] Startsev S. Ya., “Laplace invariants of hyperbolic equations linearizable by a differential substitution”, Theoret. and Math. Phys., 120 (1999), 1009–1018 | DOI | MR | Zbl
[30] Startsev S. Ya., “On the variational integrating matrix for hyperbolic systems”, J. Math. Sci., 151 (2008), 3245–3253 | DOI | MR | Zbl
[31] Startsev S. Ya., On relationships between symmetries depending on arbitrary functions and integrals of discrete equations, arXiv: 1611.02235
[32] Tricomi F. G., Lezioni sulle equazioni a derivate parziali, Editrice Gheroni, Torino, 1954 | MR | Zbl
[33] Tsarev S. P., “Factoring linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations”, Theoret. and Math. Phys., 122 (2000), 121–133 | DOI | MR | Zbl
[34] Zhiber A. V., “Quasilinear hyperbolic equations with an infinite-dimensional symmetry algebras”, Izv. Math., 58 (1995), 33–54 | DOI | MR
[35] Zhiber A. V., Murtazina R. D., Habibullin I. T., Shabat A. B., Characteristic Lie rings and nonlinear integrable equations, RCD, M.–Izhevsk, 2012 | MR
[36] Zhiber A. V., Shabat A. B., “Klein–Gordon equations with a nontrivial group”, Soviet Phys. Dokl., 24 (1979), 607–609 | MR
[37] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56 (2001), 63–106 | DOI | MR | Zbl
[38] Zhiber A. V., Sokolov V. V., Startsev S. Ya., “On nonlinear Darboux-integrable hyperbolic equations”, Dokl. Ross. Akad. Nauk, 343 (1995), 746–748 | MR | Zbl