Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by the importance of symplectic isotropic realisations in the study of Poisson manifolds, this paper investigates the local and global theory of contact isotropic realisations of Jacobi manifolds, which are those of minimal dimension. These arise naturally when considering multiplicity-free actions in contact geometry, as shown in this paper. The main results concern a classification of these realisations up to a suitable notion of isomorphism, as well as establishing a relation between the existence of symplectic and contact isotropic realisations for Poisson manifolds. The main tool is the classical Spencer operator which is related to Jacobi structures via their associated Lie algebroid, which allows to generalise previous results as well as providing more conceptual proofs for existing ones.
Keywords: Jacobi structures; contact manifolds; Poisson structures; projective structures; contact actions.
@article{SIGMA_2017_13_a32,
     author = {Mar{\'\i}a Amelia Salazar and Daniele Sepe},
     title = {Contact {Isotropic} {Realisations} of {Jacobi} {Manifolds} via {Spencer} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/}
}
TY  - JOUR
AU  - María Amelia Salazar
AU  - Daniele Sepe
TI  - Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/
LA  - en
ID  - SIGMA_2017_13_a32
ER  - 
%0 Journal Article
%A María Amelia Salazar
%A Daniele Sepe
%T Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/
%G en
%F SIGMA_2017_13_a32
María Amelia Salazar; Daniele Sepe. Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/

[1] Banyaga A., Molino P., “Géométrie des formes de contact complètement intégrables de type toriques”, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992 (Montpellier), Univ. Montpellier II, Montpellier, 1993, 1–25 | MR

[2] Boothby W. M., Wang H. C., “On contact manifolds”, Ann. of Math., 68 (1958), 721–734 | DOI | MR | Zbl

[3] Coste A., Dazord P., Weinstein A., “Groupoïdes symplectiques”, Publications du Département de Mathématiques. Nouvelle Série. A, v. 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Univ. Claude-Bernard, Lyon, 1987, i–ii, 1–62 | MR

[4] Crainic M., Fernandes R. L., “Integrability of Poisson brackets”, J. Differential Geom., 66 (2004), 71–137, arXiv: math.DG/0210152 | DOI | MR | Zbl

[5] Crainic M., Fernandes R. L., Martínez Torres D., “Poisson manifolds of compact types (PMCT 1)”, J. Reine Angew. Math. (to appear) , arXiv: 1510.07108 | DOI | MR

[6] Crainic M., Fernandes R. L., Martínez Torres D., Poisson manifolds of compact types (PMCT 2), arXiv: 1603.00064

[7] Crainic M., Salazar M. A., “Jacobi structures and Spencer operators”, J. Math. Pures Appl., 103 (2015), 504–521, arXiv: 1309.6156 | DOI | MR | Zbl

[8] Crainic M., Salazar M. A., Struchiner I., “Multiplicative forms and Spencer operators”, Math. Z., 279 (2015), 939–979, arXiv: 1210.2277 | DOI | MR | Zbl

[9] Crainic M., Zhu C., “Integrability of Jacobi and Poisson structures”, Ann. Inst. Fourier (Grenoble), 57 (2007), 1181–1216, arXiv: math.DG/0403268 | DOI | MR | Zbl

[10] Dazord P., “Sur l'intégration des algèbres de Lie locales et la préquantification”, Bull. Sci. Math., 121 (1997), 423–462 | MR | Zbl

[11] Dazord P., Delzant T., “Le problème général des variables actions-angles”, J. Differential Geom., 26 (1987), 223–251 | DOI | MR | Zbl

[12] Dazord P., Lichnerowicz A., Marle C.-M., “Structure locale des variétés de Jacobi”, J. Math. Pures Appl., 70 (1991), 101–152 | MR | Zbl

[13] de León M., López B., Marrero J. C., Padrón E., “On the computation of the Lichnerowicz–Jacobi cohomology”, J. Geom. Phys., 44 (2003), 507–522 | DOI | MR | Zbl

[14] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[15] El Kacimi-Alaoui A., “Sur la cohomologie feuilletée”, Compositio Math., 49 (1983), 195–215 | MR | Zbl

[16] Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl

[17] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. I”, J. Differential Geom., 72 (2006), 169–338, arXiv: math.AG/0309070 | DOI | MR | Zbl

[18] Guedira F., Lichnerowicz A., “Géométrie des algèbres de Lie locales de Kirillov”, J. Math. Pures Appl., 63 (1984), 407–484 | MR | Zbl

[19] Guillemin V., Sjamaar R., Convexity properties of Hamiltonian group actions, CRM Monograph Series, 26, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[20] Guillemin V., Sternberg S., “A normal form for the moment map”, Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982), Math. Phys. Stud., 6, Reidel, Dordrecht, 1984, 161–175 | MR

[21] Jovanović B., “Noncommutative integrability and action-angle variables in contact geometry”, J. Symplectic Geom., 10 (2012), 535–561, arXiv: 1103.3611 | DOI | MR | Zbl

[22] Kerbrat Y., Souici-Benhammadi Z., “Variétés de {J}acobi et groupoïdes de contact”, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 81–86 | MR | Zbl

[23] Kirillov A. A., “Local Lie algebras”, Russ. Math. Surv., 31:4 (1976), 55–76 | DOI | MR

[24] Knop F., Kraft H., Luna D., Vust T., “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | DOI | MR

[25] Lerman E., “Contact toric manifolds”, J. Symplectic Geom., 1 (2003), 785–828, arXiv: math.SG/0107201 | DOI | MR | Zbl

[26] Lichnerowicz A., “Les variétés de Jacobi et leurs algèbres de Lie associées”, J. Math. Pures Appl., 57 (1978), 453–488 | MR | Zbl

[27] Marle C.-M., “Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique”, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227–251 | MR | Zbl

[28] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1998 | MR

[29] Ortega J.-P., Ratiu T. S., “A symplectic slice theorem”, Lett. Math. Phys., 59 (2002), 81–93, arXiv: math.SG/0110084 | DOI | MR | Zbl

[30] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl

[31] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104 | DOI | MR | Zbl

[32] Wolbert S., Symplectic toric stratified spaces with isolated singularities, arXiv: 1510.05740

[33] Zambon M., Zhu C., “Contact reduction and groupoid actions”, Trans. Amer. Math. Soc., 358 (2006), 1365–1401, arXiv: math.DG/0405047 | DOI | MR | Zbl