@article{SIGMA_2017_13_a32,
author = {Mar{\'\i}a Amelia Salazar and Daniele Sepe},
title = {Contact {Isotropic} {Realisations} of {Jacobi} {Manifolds} via {Spencer} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/}
}
TY - JOUR AU - María Amelia Salazar AU - Daniele Sepe TI - Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/ LA - en ID - SIGMA_2017_13_a32 ER -
María Amelia Salazar; Daniele Sepe. Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a32/
[1] Banyaga A., Molino P., “Géométrie des formes de contact complètement intégrables de type toriques”, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992 (Montpellier), Univ. Montpellier II, Montpellier, 1993, 1–25 | MR
[2] Boothby W. M., Wang H. C., “On contact manifolds”, Ann. of Math., 68 (1958), 721–734 | DOI | MR | Zbl
[3] Coste A., Dazord P., Weinstein A., “Groupoïdes symplectiques”, Publications du Département de Mathématiques. Nouvelle Série. A, v. 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Univ. Claude-Bernard, Lyon, 1987, i–ii, 1–62 | MR
[4] Crainic M., Fernandes R. L., “Integrability of Poisson brackets”, J. Differential Geom., 66 (2004), 71–137, arXiv: math.DG/0210152 | DOI | MR | Zbl
[5] Crainic M., Fernandes R. L., Martínez Torres D., “Poisson manifolds of compact types (PMCT 1)”, J. Reine Angew. Math. (to appear) , arXiv: 1510.07108 | DOI | MR
[6] Crainic M., Fernandes R. L., Martínez Torres D., Poisson manifolds of compact types (PMCT 2), arXiv: 1603.00064
[7] Crainic M., Salazar M. A., “Jacobi structures and Spencer operators”, J. Math. Pures Appl., 103 (2015), 504–521, arXiv: 1309.6156 | DOI | MR | Zbl
[8] Crainic M., Salazar M. A., Struchiner I., “Multiplicative forms and Spencer operators”, Math. Z., 279 (2015), 939–979, arXiv: 1210.2277 | DOI | MR | Zbl
[9] Crainic M., Zhu C., “Integrability of Jacobi and Poisson structures”, Ann. Inst. Fourier (Grenoble), 57 (2007), 1181–1216, arXiv: math.DG/0403268 | DOI | MR | Zbl
[10] Dazord P., “Sur l'intégration des algèbres de Lie locales et la préquantification”, Bull. Sci. Math., 121 (1997), 423–462 | MR | Zbl
[11] Dazord P., Delzant T., “Le problème général des variables actions-angles”, J. Differential Geom., 26 (1987), 223–251 | DOI | MR | Zbl
[12] Dazord P., Lichnerowicz A., Marle C.-M., “Structure locale des variétés de Jacobi”, J. Math. Pures Appl., 70 (1991), 101–152 | MR | Zbl
[13] de León M., López B., Marrero J. C., Padrón E., “On the computation of the Lichnerowicz–Jacobi cohomology”, J. Geom. Phys., 44 (2003), 507–522 | DOI | MR | Zbl
[14] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[15] El Kacimi-Alaoui A., “Sur la cohomologie feuilletée”, Compositio Math., 49 (1983), 195–215 | MR | Zbl
[16] Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl
[17] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. I”, J. Differential Geom., 72 (2006), 169–338, arXiv: math.AG/0309070 | DOI | MR | Zbl
[18] Guedira F., Lichnerowicz A., “Géométrie des algèbres de Lie locales de Kirillov”, J. Math. Pures Appl., 63 (1984), 407–484 | MR | Zbl
[19] Guillemin V., Sjamaar R., Convexity properties of Hamiltonian group actions, CRM Monograph Series, 26, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[20] Guillemin V., Sternberg S., “A normal form for the moment map”, Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982), Math. Phys. Stud., 6, Reidel, Dordrecht, 1984, 161–175 | MR
[21] Jovanović B., “Noncommutative integrability and action-angle variables in contact geometry”, J. Symplectic Geom., 10 (2012), 535–561, arXiv: 1103.3611 | DOI | MR | Zbl
[22] Kerbrat Y., Souici-Benhammadi Z., “Variétés de {J}acobi et groupoïdes de contact”, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 81–86 | MR | Zbl
[23] Kirillov A. A., “Local Lie algebras”, Russ. Math. Surv., 31:4 (1976), 55–76 | DOI | MR
[24] Knop F., Kraft H., Luna D., Vust T., “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | DOI | MR
[25] Lerman E., “Contact toric manifolds”, J. Symplectic Geom., 1 (2003), 785–828, arXiv: math.SG/0107201 | DOI | MR | Zbl
[26] Lichnerowicz A., “Les variétés de Jacobi et leurs algèbres de Lie associées”, J. Math. Pures Appl., 57 (1978), 453–488 | MR | Zbl
[27] Marle C.-M., “Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique”, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227–251 | MR | Zbl
[28] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1998 | MR
[29] Ortega J.-P., Ratiu T. S., “A symplectic slice theorem”, Lett. Math. Phys., 59 (2002), 81–93, arXiv: math.SG/0110084 | DOI | MR | Zbl
[30] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl
[31] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104 | DOI | MR | Zbl
[32] Wolbert S., Symplectic toric stratified spaces with isolated singularities, arXiv: 1510.05740
[33] Zambon M., Zhu C., “Contact reduction and groupoid actions”, Trans. Amer. Math. Soc., 358 (2006), 1365–1401, arXiv: math.DG/0405047 | DOI | MR | Zbl