Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space.
Keywords: parabolic geometries; generalized symmetries; generalizations of symmetric spaces; automorphisms with fixed points; prolongation rigidity; geometric properties of symmetric parabolic geometries.
@article{SIGMA_2017_13_a31,
     author = {Jan Gregorovi\v{c} and Lenka Zalabov\'a},
     title = {Local {Generalized} {Symmetries} and {Locally} {Symmetric} {Parabolic} {Geometries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a31/}
}
TY  - JOUR
AU  - Jan Gregorovič
AU  - Lenka Zalabová
TI  - Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a31/
LA  - en
ID  - SIGMA_2017_13_a31
ER  - 
%0 Journal Article
%A Jan Gregorovič
%A Lenka Zalabová
%T Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a31/
%G en
%F SIGMA_2017_13_a31
Jan Gregorovič; Lenka Zalabová. Local Generalized Symmetries and Locally Symmetric Parabolic Geometries. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a31/

[1] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[2] Bieliavsky P., Falbel E., Gorodski C., “The classification of simply-connected contact sub-Riemannian symmetric spaces”, Pacific J. Math., 188 (1999), 65–82 | DOI | MR | Zbl

[3] Čap A., “Correspondence spaces and twistor spaces for parabolic geometries”, J. Reine Angew. Math., 582 (2005), 143–172, arXiv: math.DG/0102097 | DOI | MR | Zbl

[4] Čap A., Slovák J., Parabolic geometries, v. I, Mathematical Surveys and Monographs, 154, Background and general theory, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[5] Derdzinski A., Roter W., “Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds”, Tohoku Math. J., 59 (2007), 565–602, arXiv: math.DG/0604568 | DOI | MR | Zbl

[6] Gregorovič J., “General construction of symmetric parabolic structures”, Differential Geom. Appl., 30 (2012), 450–476, arXiv: 1207.0190 | DOI | MR | Zbl

[7] Gregorovič J., Geometric structures invariant to symmetries, FOLIA Mathematica, 18, Masaryk University, Brno, 2012, arXiv: 1207.0193 | DOI

[8] Gregorovič J., “Local reflexion spaces”, Arch. Math. (Brno), 48 (2012), 323–332, arXiv: 1207.0189 | DOI | MR | Zbl

[9] Gregorovič J., “Classification of invariant AHS-structures on semisimple locally symmetric spaces”, Cent. Eur. J. Math., 11 (2013), 2062–2075, arXiv: 1301.5123 | DOI | MR | Zbl

[10] Gregorovič J., Zalabová L., “Symmetric parabolic contact geometries and symmetric spaces”, Transform. Groups, 18 (2013), 711–737 | DOI | MR | Zbl

[11] Gregorovič J., Zalabová L., “Notes on symmetric conformal geometries”, Arch. Math. (Brno), 51 (2015), 287–296, arXiv: 1503.02505 | DOI | MR | Zbl

[12] Gregorovič J., Zalabová L., “On automorphisms with natural tangent actions on homogeneous parabolic geometries”, J. Lie Theory, 25 (2015), 677–715, arXiv: 1312.7318 | MR | Zbl

[13] Gregorovič J., Zalabová L., “Geometric properties of homogeneous parabolic geometries with generalized symmetries”, Differential Geom. Appl., 49 (2016), 388–422, arXiv: 1411.2402 | DOI | MR | Zbl

[14] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[15] Kaup W., Zaitsev D., “On symmetric Cauchy–Riemann manifolds”, Adv. Math., 149 (2000), 145–181, arXiv: math.CV/9905183 | DOI | MR | Zbl

[16] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Tracts in Pure and Applied Mathematics, 15, John Wiley Sons, Inc., New York–London–Sydney, 1969 | MR

[17] Kowalski O., Generalized symmetric spaces, Lecture Notes in Mathematics, 805, Springer-Verlag, Berlin–New York, 1980 | DOI | MR | Zbl

[18] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl

[19] Loos O., “Spiegelungsräume und homogene symmetrische Räume”, Math. Z., 99 (1967), 141–170 | DOI | MR | Zbl

[20] Loos O., “An intrinsic characterization of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms”, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 160–179 | DOI | MR | Zbl

[21] Podestà F., “A class of symmetric spaces”, Bull. Soc. Math. France, 117 (1989), 343–360 | DOI | MR | Zbl

[22] Reynolds R. F., Thompson A. H., “Projective-symmetric spaces”, J. Austral. Math. Soc., 7 (1967), 48–54 | DOI | MR | Zbl

[23] Zalabová L., “Symmetries of parabolic geometries”, Differential Geom. Appl., 27 (2009), 605–622, arXiv: 0901.0626 | DOI | MR | Zbl

[24] Zalabová L., “Parabolic symmetric spaces”, Ann. Global Anal. Geom., 37 (2010), 125–141, arXiv: 0908.0839 | DOI | MR | Zbl

[25] Zalabová L., “Symmetries of parabolic contact structures”, J. Geom. Phys., 60 (2010), 1698–1709, arXiv: 1003.5443 | DOI | MR | Zbl