Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of this work is to develop a method of constructing higher Hamiltonians of quantum integrable systems associated with the solution of the Zamolodchikov tetrahedral equation. As opposed to the result of V. V. Bazhanov and S. M. Sergeev the approach presented here is effective for generic solutions of the tetrahedral equation without spectral parameter. In a sense, this result is a two-dimensional generalization of the method by J.-M. Maillet. The work is a part of the project relating the tetrahedral equation with the quasi-invariants of 2-knots.
Keywords: Zamolodchikov tetrahedral equation; quantum integrable systems; star-triangle transformation.
@article{SIGMA_2017_13_a30,
     author = {Dmitry V. Talalaev},
     title = {Zamolodchikov {Tetrahedral} {Equation} and {Higher} {Hamiltonians} of $2d$ {Quantum} {Integrable} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a30/}
}
TY  - JOUR
AU  - Dmitry V. Talalaev
TI  - Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a30/
LA  - en
ID  - SIGMA_2017_13_a30
ER  - 
%0 Journal Article
%A Dmitry V. Talalaev
%T Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a30/
%G en
%F SIGMA_2017_13_a30
Dmitry V. Talalaev. Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a30/

[1] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[2] Bazhanov V. V., Sergeev S. M., “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A: Math. Gen., 39 (2006), 3295–3310, arXiv: hep-th/0509181 | DOI | MR | Zbl

[3] Carter J. S., Jelsovsky D., Kamada S., Langford L., Saito M., “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Amer. Math. Soc., 355 (2003), 3947–3989, arXiv: math.GT/9903135 | DOI | MR | Zbl

[4] Crans A. S., Lie 2-algebras, Ph.D. Thesis, University of California, 2004, arXiv: math.QA/0409602 | MR

[5] Faddeev L. D., Reshetikhin N. Yu., Takhtajan L. A., “Quantization of Lie groups and Lie algebras”, Algebraic Analysis, v. I, Academic Press, Boston, MA, 1988, 129–139 | DOI | MR

[6] Hietarinta J., “Permutation-type solutions to the Yang–Baxter and other $n$-simplex equations”, J. Phys. A: Math. Gen., 30 (1997), 4757–4771, arXiv: q-alg/9702006 | DOI | MR | Zbl

[7] Kashaev R. M., “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38 (1996), 389–397, arXiv: solv-int/9512005 | DOI | MR | Zbl

[8] Kashaev R. M., Korepanov I. G., Sergeev S. M., “The functional tetrahedron equation”, Theoret. and Math. Phys., 117 (1998), 1402–1413, arXiv: solv-int/9801015 | DOI | MR | Zbl

[9] Korepanov I. G., Sharygin G. I., Talalaev D. V., “Cohomologies of $n$-simplex relations”, Math. Proc. Cambridge Philos. Soc., 161 (2016), 203–222, arXiv: 1409.3127 | DOI | MR

[10] Korepanov I. G., Sharygin G. I., Talalaev D. V., Cohomology of the tetrahedral complex and quasi-invariants of 2-knots, arXiv: 1510.03015

[11] Maillet J.-M., “Lax equations and quantum groups”, Phys. Lett. B, 245 (1990), 480–486 | DOI | MR

[12] Maillet J.-M., Nijhoff F., “Integrability for multidimensional lattice models”, Phys. Lett. B, 224 (1989), 389–396 | DOI | MR

[13] Zamolodchikov A. B., “Tetrahedra equations and integrable systems in three-dimensional space”, Soviet Phys. JETP, 52 (1980), 325–336 | MR

[14] Zheglov A. B., Osipov D. V., “On some problems associated with the Krichever correspondence”, Math. Notes, 81 (2007), 467–476, arXiv: math.AG/0610364 | DOI | MR | Zbl