Mots-clés : $(2, 3
@article{SIGMA_2017_13_a3,
author = {Katja Sagerschnig and Travis Willse},
title = {The {Geometry} of {Almost} {Einstein} $(2, 3, 5)$ {Distributions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a3/}
}
Katja Sagerschnig; Travis Willse. The Geometry of Almost Einstein $(2, 3, 5)$ Distributions. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a3/
[1] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), v. 5, IEEE Control Systems Society, Piscataway, NJ, 1999, 431–435 | DOI
[2] An D., Nurowski P., “Twistor space for rolling bodies”, Comm. Math. Phys., 326 (2014), 393–414, arXiv: 1210.3536 | DOI | MR | Zbl
[3] Armstrong S., “Projective holonomy. II. Cones and complete classifications”, Ann. Global Anal. Geom., 33 (2008), 137–160, arXiv: math.DG/0602621 | DOI | MR | Zbl
[4] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl
[5] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[6] Bor G., Lamoneda L. H., Nurowski P., The dancing metric, ${\rm G}_2$-symmetry and projective rolling, arXiv: 1506.00104
[7] Bor G., Montgomery R., “${\rm G}_2$ and the rolling distribution”, Enseign. Math., 55 (2009), 157–196, arXiv: math.DG/0612469 | DOI | MR | Zbl
[8] Bor G., Nurowski P., Private communication
[9] Brinkmann H. W., “Riemann spaces conformal to Einstein spaces”, Math. Ann., 91 (1924), 269–278 | DOI | MR | Zbl
[10] Brinkmann H. W., “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94 (1925), 119–145 | DOI | MR | Zbl
[11] Brown R. B., Gray A., “Vector cross products”, Comment. Math. Helv., 42 (1967), 222–236 | DOI | MR | Zbl
[12] Bryant R. L., “Some remarks on ${\rm G}_2$-structures”, Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT) (Gökova, 2006), eds. S. Akbulut, T. Onder, R. J. Stern, 75–109, arXiv: math.DG/0305124 | MR | Zbl
[13] Bryant R. L., Hsu L., “Rigidity of integral curves of rank $2$ distributions”, Invent. Math., 114 (1993), 435–461 | DOI | MR | Zbl
[14] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl
[15] Čap A., “Infinitesimal automorphisms and deformations of parabolic geometries”, J. Eur. Math. Soc., 10 (2008), 415–437, arXiv: math.DG/0508535 | DOI | MR
[16] Čap A., Gover A. R., “A holonomy characterisation of Fefferman spaces”, Ann. Global Anal. Geom., 38 (2010), 399–412, arXiv: math.DG/0611939 | DOI | MR | Zbl
[17] Čap A., Gover A. R., Hammerl M., “Holonomy reductions of Cartan geometries and curved orbit decompositions”, Duke Math. J., 163 (2014), 1035–1070, arXiv: 1103.4497 | DOI | MR | Zbl
[18] Čap A., Slovák J., Parabolic geometries, v. I, Mathematical Surveys and Monographs, 154, Background and general theory, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[19] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl
[20] Cartan É., “Sur la structure des groupes simples finis et continus”, C. R. Acad. Sci. Paris, 113 (1893), 784–786
[21] Cartan É., “Les systèmes de {P}faff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192 | MR | Zbl
[22] Chudecki A., “On some examples of para-Hermite and para-Kähler Einstein spaces with $\Lambda \neq 0$”, J. Geom. Phys., 112 (2017), 175–196, arXiv: 1602.02913 | DOI | MR | Zbl
[23] Cortés V., Leistner T., Schäfer L., Schulte-Hengesbach F., “Half-flat structures and special holonomy”, Proc. Lond. Math. Soc., 102 (2011), 113–158, arXiv: 0907.1222 | DOI | MR | Zbl
[24] Curry S., Gover A. R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv: 1412.7559
[25] Doubrov B., Komrakov B., The geometry of second-order ordinary differential equations, arXiv: 1602.00913
[26] Doubrov B., Kruglikov B., “On the models of submaximal symmetric rank 2 distributions in 5D”, Differential Geom. Appl., 35, suppl. (2014), 314–322, arXiv: 1311.7057 | DOI | MR | Zbl
[27] Dunajski M., Przanowski M., “Null Kähler structures, symmetries and integrability”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebański, eds. H. García-Compeán, B. Mielnik, M. Montesinos, M. Przanowski, World Sci. Publ., Hackensack, NJ, 2006, 147–155, arXiv: gr-qc/0310005 | DOI | Zbl
[28] Engel F., “Sur un groupe simple à quatorze paramètres”, C. R. Acad. Sci. Paris, 116 (1893), 786–788
[29] Fefferman C., Graham C. R., The ambient metric, Annals of Mathematics Studies, 178, Princeton University Press, Princeton, NJ, 2012, arXiv: 0710.0919 | MR | Zbl
[30] Fefferman C. L., “Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains”, Ann. of Math., 103 (1976), 395–416 | DOI | MR | Zbl
[31] Fox D. J. F., “Contact projective structures”, Indiana Univ. Math. J., 54 (2005), 1547–1598, arXiv: math.DG/0402332 | DOI | MR | Zbl
[32] Gover A. R., “Almost conformally Einstein manifolds and obstructions”, Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 247–260, arXiv: math.DG/0412393 | MR | Zbl
[33] Gover A. R., “Almost Einstein and Poincaré–Einstein manifolds in Riemannian signature”, J. Geom. Phys., 60 (2010), 182–204, arXiv: 0803.3510 | DOI | MR | Zbl
[34] Gover A. R., Macbeth H. R., “Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry”, Differential Geom. Appl., 33, suppl. (2014), 44–69, arXiv: 1212.6286 | DOI | MR | Zbl
[35] Gover A. R., Neusser K., Willse T., Sasaki and Kähler structures and their compactifications via projective geometry, in preparation
[36] Gover A. R., Nurowski P., “Obstructions to conformally Einstein metrics in $n$ dimensions”, J. Geom. Phys., 56 (2006), 450–484, arXiv: math.DG/0405304 | DOI | MR | Zbl
[37] Gover A. R., Panai R., Willse T., “Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy”, Indiana Univ. Math. J. (to appear) , arXiv: 1403.1959
[38] Graham C. R., Willse T., “Parallel tractor extension and ambient metrics of holonomy split ${\rm G}_2$”, J. Differential Geom., 92 (2012), 463–505, arXiv: 1109.3504 | MR
[39] Haantjes J., Wrona W., “Über konformeuklidische und Einsteinsche Räume gerader Dimension”, Proc. Nederl. Akad. Wetensch., 42 (1939), 626–636 | MR
[40] Hammerl M., Natural prolongations of BGG-operators, Ph.D. Thesis, Universität Wien, 2009
[41] Hammerl M., Sagerschnig K., “Conformal structures associated to generic rank 2 distributions on 5-manifolds – characterization and Killing-field decomposition”, SIGMA, 5 (2009), 081, 29 pp., arXiv: 0908.0483 | DOI | MR | Zbl
[42] Hammerl M., Sagerschnig K., “The twistor spinors of generic 2- and 3-distributions”, Ann. Global Anal. Geom., 39 (2011), 403–425, arXiv: 1004.3632 | DOI | MR | Zbl
[43] Hammerl M., Sagerschnig K., Šilhan J., Taghavi-Chabert A., Žádník V., A projective-to-conformal Fefferman-type construction, arXiv: 1510.03337
[44] Kath I., Killing spinors on pseudo-Riemannian manifolds, Habilitationsschrift, Humboldt-Universität, Berlin, 1999 | Zbl
[45] Kath I., “$G_{2(2)}^*$-structures on pseudo-Riemannian manifolds”, J. Geom. Phys., 27 (1998), 155–177 | DOI | MR | Zbl
[46] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[47] Kozameh C. N., Newman E. T., Tod K. P., “Conformal Einstein spaces”, Gen. Relativity Gravitation, 17 (1985), 343–352 | DOI | MR | Zbl
[48] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math. (to appear) , arXiv: 1303.1307
[49] Leistner T., Nurowski P., “Ambient metrics with exceptional holonomy”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 407–436, arXiv: 0904.0186 | MR | Zbl
[50] Leitner F., “Conformal Killing forms with normalisation condition”, Rend. Circ. Mat. Palermo (2) Suppl., 2005, 279–292, arXiv: math.DG/0406316 | MR | Zbl
[51] Leitner F., “A remark on unitary conformal holonomy”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, eds. M. G. Eastwood, W. Miller, Springer, New York, 2008, 445–460, arXiv: math.DG/0604393 | DOI | Zbl
[52] Nurowski P., “Differential equations and conformal structures”, J. Geom. Phys., 55 (2005), 19–49, arXiv: math.DG/0406400 | DOI | MR | Zbl
[53] Nurowski P., Sparling G. A., “Three-dimensional Cauchy–Riemann structures and second-order ordinary differential equations”, Classical Quantum Gravity, 20 (2003), 4995–5016, arXiv: math.DG/0306331 | DOI | MR | Zbl
[54] Sagerschnig K., “Split octonions and generic rank two distributions in dimension five”, Arch. Math. (Brno), 42, suppl. (2006), 329–339 | MR | Zbl
[55] Sagerschnig K., Willse T., The almost Einstein operator for $(2, 3, 5)$ distributions, in preparation
[56] Sagerschnig K., Willse T., Fefferman constructions for Kähler surfaces, in preparation
[57] Sasaki S., “On a relation between a Riemannian space which is conformal with Einstein spaces and normal conformally connected spaces whose groups of holonomy fix a point or a hypersphere”, Tensor, 5 (1942), 66–72 | MR | Zbl
[58] Schouten J. A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Die Grundlehren der Mathematischen Wissenschaften, 10, 2nd ed., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954 | DOI | MR
[59] Schulte-Hengesbach F., Half-flat structure on Lie groups, Ph.D. Thesis, Universität Hamburg, 2010
[60] Semmelmann U., “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245 (2003), 503–527, arXiv: math.DG/0206117 | DOI | MR | Zbl
[61] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[62] Susskind L., “The world as a hologram”, J. Math. Phys., 36 (1995), 6377–6396, arXiv: hep-th/9409089 | DOI | MR | Zbl
[63] Szekeres P., “Spaces conformal to a class of spaces in general relativity”, Proc. Roy. Soc. Ser. A, 274 (1963), 206–212 | DOI | MR | Zbl
[64] Willse T., “Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy”, Differential Geom. Appl., 33, suppl. (2014), 81–111, arXiv: 1302.7163 | DOI | MR | Zbl
[65] Wolf J. A., “Isotropic manifolds of indefinite metric”, Comment. Math. Helv., 39 (1964), 21–64 | DOI | MR | Zbl
[66] Wong Y.-C., “Some Einstein spaces with conformally separable fundamental tensors”, Trans. Amer. Math. Soc., 53 (1943), 157–194 | DOI | MR | Zbl
[67] Yano K., “Conformal and concircular geometries in Einstein spaces”, Proc. Imp. Acad. Tokyo, 19 (1943), 444–453 | DOI | MR | Zbl