Isomonodromy for the Degenerate Fifth Painlevé Equation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a sequel to papers by the last two authors making the Riemann–Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann–Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto–Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
Keywords: moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations.
@article{SIGMA_2017_13_a28,
     author = {Primitivo B. Acosta-Hum\'anez and Marius van der Put and Jaap Top},
     title = {Isomonodromy for the {Degenerate} {Fifth} {Painlev\'e} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a28/}
}
TY  - JOUR
AU  - Primitivo B. Acosta-Humánez
AU  - Marius van der Put
AU  - Jaap Top
TI  - Isomonodromy for the Degenerate Fifth Painlevé Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a28/
LA  - en
ID  - SIGMA_2017_13_a28
ER  - 
%0 Journal Article
%A Primitivo B. Acosta-Humánez
%A Marius van der Put
%A Jaap Top
%T Isomonodromy for the Degenerate Fifth Painlevé Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a28/
%G en
%F SIGMA_2017_13_a28
Primitivo B. Acosta-Humánez; Marius van der Put; Jaap Top. Isomonodromy for the Degenerate Fifth Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a28/

[1] Chekhov L., Mazzocco M., Rubtsov V., “Painlevé monodromy manifolds, decorated character varieties and cluster algebras”, Int. Math. Res. Not. (to appear) , arXiv: 1511.03851 | DOI

[2] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[3] Gromak V. I., “On the theory of Painlevé's equations”, Differential Equations, 11 (1975), 285–287 | MR

[4] Inaba M., “Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence”, J. Algebraic Geom., 22 (2013), 407–480, arXiv: math.AG/0602004 | DOI | MR | Zbl

[5] Inaba M., Iwasaki K., Saito M.-H., “Dynamics of the sixth Painlevé equation”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 103–167 | MR | Zbl

[6] Inaba M., Iwasaki K., Saito M.-H., “Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. I”, Publ. Res. Inst. Math. Sci., 42 (2006), 987–1089, arXiv: math.AG/0309342 | DOI | MR | Zbl

[7] Inaba M., Iwasaki K., Saito M.-H., “Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. II”, Moduli Spaces and Arithmetic Geometry, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006, 387–432, arXiv: math.AG/0605025 | MR | Zbl

[8] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[9] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[10] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the Painlevé equations. V. Third Painlevé equations of special type ${\rm P}_{\rm III}(D_7)$ and ${\rm P}_{\rm III}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl

[11] Ohyama Y., Okumura S., “R. Fuchs' problem of the Painlevé equations from the first to the fifth”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 163–178, arXiv: math.CA/0512243 | DOI | MR | Zbl

[12] Okamoto K., “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. Espaces des conditions initiales”, Japan. J. Math., 5 (1979), 1–79 | MR | Zbl

[13] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 575–618 | MR | Zbl

[14] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, ${\rm P}_{{\rm II}}$ and ${\rm P}_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl

[15] Okamoto K., “Studies on the Painlevé equations. IV. Third Painlevé equation ${\rm P}_{{\rm III}}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl

[16] Okamoto K., “The Hamiltonians associated to the Painlevé equations”, The Painlevé property, CRM Ser. Math. Phys., Springer, New York, 1999, 735–787 | DOI | MR | Zbl

[17] van der Put M., “Families of linear differential equations related to the second Painlevé equation”, Algebraic Methods in Dynamical Systems, Banach Center Publ., 94, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 247–262 | DOI | MR | Zbl

[18] van der Put M., “Families of linear differential equations and the Painlevé equations”, Geometric and Differential Galois Theories, Sémin. Congr., 27, Soc. Math. France, Paris, 2013, 207–224 | MR

[19] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl

[20] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[21] van der Put M., Top J., “A Riemann–Hilbert approach to Painlevé IV”, J. Nonlinear Math. Phys., 20:1 (2013), 165–177, arXiv: 1207.4335 | DOI | MR

[22] van der Put M., Top J., “Geometric aspects of the Painlevé equations ${\rm PIII}(\rm D_6)$ and ${\rm PIII}(\rm D_7)$”, SIGMA, 10 (2014), 050, 24 pp., arXiv: 1207.4023 | DOI | MR | Zbl

[23] Saito M.-H., Takebe T., “Classification of Okamoto–Painlevé pairs”, Kobe J. Math., 19 (2002), 21–50, arXiv: math.AG/0006028 | MR | Zbl

[24] Saito M.-H., Takebe T., Terajima H., “Deformation of Okamoto–Painlevé pairs and Painlevé equations”, J. Algebraic Geom., 11 (2002), 311–362, arXiv: math.AG/0006026 | DOI | MR | Zbl

[25] Saito M.-H., Terajima H., “Nodal curves and {R}iccati solutions of Painlevé equations”, J. Math. Kyoto Univ., 44 (2004), 529–568, arXiv: math.AG/0201225 | DOI | MR | Zbl

[26] Witte N. S., “New transformations for Painlevé's third transcendent”, Proc. Amer. Math. Soc., 132 (2004), 1649–1658, arXiv: math.CA/0210019 | DOI | MR | Zbl