Rigidity and Vanishing Theorems for Almost Even-Clifford Hermitian Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the rigidity and vanishing of several indices of “geometrically natural” twisted Dirac operators on almost even-Clifford Hermitian manifolds admitting circle actions by automorphisms.
Keywords: almost even-Clifford Hermitian manifolds; index of elliptic operator; twisted Dirac operators; circle action by automorphisms.
@article{SIGMA_2017_13_a26,
     author = {Ana Lucia Garcia-Pulido and Rafael Herrera},
     title = {Rigidity and {Vanishing} {Theorems} for {Almost} {Even-Clifford} {Hermitian} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a26/}
}
TY  - JOUR
AU  - Ana Lucia Garcia-Pulido
AU  - Rafael Herrera
TI  - Rigidity and Vanishing Theorems for Almost Even-Clifford Hermitian Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a26/
LA  - en
ID  - SIGMA_2017_13_a26
ER  - 
%0 Journal Article
%A Ana Lucia Garcia-Pulido
%A Rafael Herrera
%T Rigidity and Vanishing Theorems for Almost Even-Clifford Hermitian Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a26/
%G en
%F SIGMA_2017_13_a26
Ana Lucia Garcia-Pulido; Rafael Herrera. Rigidity and Vanishing Theorems for Almost Even-Clifford Hermitian Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a26/

[1] Arizmendi G., Garcia-Pulido A. L., Herrera R., A note on the geometry and topology of almost even-Clifford Hermitian manifolds, arXiv: 1606.00774 | MR

[2] Arizmendi G., Herrera R., “Centralizers of spin subalgebras”, J. Geom. Phys., 97 (2015), 77–92, arXiv: 1503.06168 | DOI | MR | Zbl

[3] Atiyah M. F., Hirzebruch F., “Spin-manifolds and group actions”, Essays on Topology and Related Topics, Mémoires dédiés à Georges de Rham, Springer, New York, 1970, 18–28 | DOI | MR

[4] Atiyah M. F., Singer I. M., “The index of elliptic operators. III”, Ann. of Math., 87 (1968), 546–604 | DOI | MR | Zbl

[5] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004 | MR | Zbl

[6] Bott R., Taubes C., “On the rigidity theorems of Witten”, J. Amer. Math. Soc., 2 (1989), 137–186 | DOI | MR | Zbl

[7] Bröcker T., tom Dieck T., Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[8] Dessai A., “Rigidity theorems for ${\rm Spin}^C$-manifolds”, Topology, 39 (2000), 239–258 | DOI | MR | Zbl

[9] Friedrich T., Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[10] Friedrich T., “Weak Spin(9)-structures on 16-dimensional Riemannian manifolds”, Asian J. Math., 5 (2001), 129–160, arXiv: math.DG/9912112 | DOI | MR | Zbl

[11] Hattori A., “${\rm Spin}^{c}$-structures and $S^{1}$-actions”, Invent. Math., 48 (1978), 7–31 | DOI | MR | Zbl

[12] Herrera H., Herrera R., “Rigidity and vanishing theorems for almost quaternionic manifolds”, Geom. Dedicata, 134 (2008), 139–152 | DOI | MR | Zbl

[13] Hirzebruch F., “Elliptic genera of level $N$ for complex manifolds”, Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988, 37–63 | DOI | MR

[14] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg Sohn, Braunschweig, 1992 | DOI | MR | Zbl

[15] Hirzebruch F., Slodowy P., “Elliptic genera, involutions, and homogeneous spin manifolds”, Geom. Dedicata, 35 (1990), 309–343 | DOI | MR | Zbl

[16] LeBrun C., Salamon S., “Strong rigidity of positive quaternion-Kähler manifolds”, Invent. Math., 118 (1994), 109–132 | DOI | MR | Zbl

[17] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl

[18] Liu K., “On modular invariance and rigidity theorems”, J. Differential Geom., 41 (1995), 343–396 | DOI | MR | Zbl

[19] Moroianu A., Semmelmann U., “Clifford structure on Riemannian manifolds”, Adv. Math., 228 (2011), 940–967, arXiv: 0912.4207 | DOI | MR | Zbl

[20] Roe J., Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, 395, 2nd ed., Longman, Harlow, 1998 | MR | Zbl

[21] Salamon S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, 201, Longman, Harlow, 1989 | MR | Zbl

[22] Taubes C. H., “$S^1$ actions and elliptic genera”, Comm. Math. Phys., 122 (1989), 455–526 | DOI | MR | Zbl

[23] Witten E., “Elliptic genera and quantum field theory”, Comm. Math. Phys., 109 (1987), 525–536 | DOI | MR | Zbl

[24] Witten E., “The index of the Dirac operator in loop space”, Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), Lecture Notes in Math., 1326, Springer, Berlin, 1988, 161–181 | DOI | MR