@article{SIGMA_2017_13_a25,
author = {Jean-Louis Clerc},
title = {Another {Approach} to {Juhl's} {Conformally} {Covariant} {Differential} {Operators} from $S^n$ to $S^{n-1}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/}
}
TY - JOUR
AU - Jean-Louis Clerc
TI - Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2017
VL - 13
UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/
LA - en
ID - SIGMA_2017_13_a25
ER -
Jean-Louis Clerc. Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/
[1] Beckmann R., Clerc J.-L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376 | DOI | MR | Zbl
[2] Clerc J.-L., “Covariant bi-differential operators on matrix space”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1601.07016
[3] Eelbode D., Souček V., “Conformally invariant powers of the Dirac operator in Clifford analysis”, Math. Methods Appl. Sci., 33 (2010), 1558–1570 | DOI | MR | Zbl
[4] Fischmann M., Juhl A., Somberg P., Conformal symmetry breaking differential operators on differential forms, arXiv: 1605.04517
[5] Gel'fand I. M., Shilov G. E., Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 | MR
[6] Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl
[7] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl
[8] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 | DOI | MR | Zbl
[9] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: I. General theory and F-method”, Selecta Math. (N.S.), 22 (2016), 801–845, arXiv: 1301.2111 | DOI | MR | Zbl
[10] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 | DOI | MR | Zbl
[11] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 | DOI | MR
[12] Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 | DOI | MR