Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family $({\mathbf D}_\lambda)_{\lambda\in \mathbb C}$ of differential operators on the sphere $S^n$ is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of $S^n$ which preserve the smaller sphere $S^{n-1}\subset S^n$. The family of conformally covariant differential operators from $S^n$ to $S^{n-1}$ introduced by A. Juhl is obtained by composing these operators on $S^n$ and taking restrictions to $S^{n-1}$.
Keywords: conformally covariant differential operators; Juhl's covariant differential operators.
@article{SIGMA_2017_13_a25,
     author = {Jean-Louis Clerc},
     title = {Another {Approach} to {Juhl's} {Conformally} {Covariant} {Differential} {Operators} from $S^n$ to $S^{n-1}$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/}
}
TY  - JOUR
AU  - Jean-Louis Clerc
TI  - Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/
LA  - en
ID  - SIGMA_2017_13_a25
ER  - 
%0 Journal Article
%A Jean-Louis Clerc
%T Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/
%G en
%F SIGMA_2017_13_a25
Jean-Louis Clerc. Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a25/

[1] Beckmann R., Clerc J.-L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376 | DOI | MR | Zbl

[2] Clerc J.-L., “Covariant bi-differential operators on matrix space”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1601.07016

[3] Eelbode D., Souček V., “Conformally invariant powers of the Dirac operator in Clifford analysis”, Math. Methods Appl. Sci., 33 (2010), 1558–1570 | DOI | MR | Zbl

[4] Fischmann M., Juhl A., Somberg P., Conformal symmetry breaking differential operators on differential forms, arXiv: 1605.04517

[5] Gel'fand I. M., Shilov G. E., Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 | MR

[6] Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[7] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl

[8] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 | DOI | MR | Zbl

[9] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: I. General theory and F-method”, Selecta Math. (N.S.), 22 (2016), 801–845, arXiv: 1301.2111 | DOI | MR | Zbl

[10] Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 | DOI | MR | Zbl

[11] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 | DOI | MR

[12] Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 | DOI | MR