Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multi-Poisson structure on a Lie algebra $\mathfrak{g}$ provides a systematic way to construct completely integrable Hamiltonian systems on $\mathfrak{g}$ expressed in Lax form $\partial X_\lambda /\partial t = [X_\lambda , A_\lambda ]$ in the sense of the isospectral deformation, where $X_\lambda , A_\lambda \in \mathfrak{g}$ depend rationally on the indeterminate $\lambda $ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation $\partial X_\lambda /\partial t = [X_\lambda , A_\lambda ] + \partial A_\lambda /\partial \lambda $ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four.
Mots-clés : Painlevé equations; Lax equations; multi-Poisson structure.
@article{SIGMA_2017_13_a24,
     author = {Hayato Chiba},
     title = {Multi-Poisson {Approach} to the {Painlev\'e} {Equations:} from the {Isospectral} {Deformation} to the {Isomonodromic} {Deformation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a24/}
}
TY  - JOUR
AU  - Hayato Chiba
TI  - Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a24/
LA  - en
ID  - SIGMA_2017_13_a24
ER  - 
%0 Journal Article
%A Hayato Chiba
%T Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a24/
%G en
%F SIGMA_2017_13_a24
Hayato Chiba. Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a24/

[1] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 47, Springer-Verlag, Berlin, 2004 | DOI | MR

[2] Chiba H., “The first, second and fourth Painlevé equations on weighted projective spaces”, J. Differential Equations, 260 (2016), 1263–1313, arXiv: 1311.1877 | DOI | MR | Zbl

[3] Chiba H., “The third, fifth and sixth Painlevé equations on weighted projective spaces”, SIGMA, 12 (2016), 019, 22 pp., arXiv: 1506.00444 | DOI | MR | Zbl

[4] Chiba H., Painlevé equations and weights, submitted

[5] Clarkson P. A., Joshi N., Mazzocco M., “The Lax pair for the mKdV hierarchy”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 53–64 | MR | Zbl

[6] Clarkson P. A., Joshi N., Pickering A., “Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach”, Inverse Problems, 15 (1999), 175–187, arXiv: solv-int/9811014 | DOI | MR | Zbl

[7] Cosgrove C. M., “Chazy classes IX–XI of third-order differential equations”, Stud. Appl. Math., 104 (2000), 171–228 | DOI | MR | Zbl

[8] Drinfel'd V.G., Sokolov V. V., “Lie algebras and equations of Korteweg–de Vries type”, J. Math. Sci., 30 (1985), 1975–2036 | DOI | Zbl

[9] Falqui G., Magri F., Pedroni M., Zubelli J. P., “A bi-Hamiltonian theory for stationary KDV flows and their separability”, Regul. Chaotic Dyn., 5 (2000), 33–52, arXiv: nlin.SI/0003020 | DOI | MR | Zbl

[10] Gordoa P. R., Joshi N., Pickering A., “On a generalized $2+1$ dispersive water wave hierarchy”, Publ. Res. Inst. Math. Sci., 37 (2001), 327–347 | DOI | MR | Zbl

[11] Koike T., “On new expressions of the Painlevé hierarchies”, Algebraic Analysis and the Exact WKB Analysis for Systems of Differential Equations, RIMS Kôkyûroku Bessatsu, B5, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, 153–198 | MR

[12] Kudryashov N. A., “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224 (1997), 353–360 | DOI | MR

[13] Levin A. M., Olshanetsky M. A., “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland Models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 313–332 | MR

[14] Magnano G., Magri F., “Poisson–Nijenhuis structures and Sato hierarchy”, Rev. Math. Phys., 3 (1991), 403–466 | DOI | MR | Zbl

[15] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl

[16] Magri F., Falqui G., Pedroni M., “The method of Poisson pairs in the theory of nonlinear PDEs”, Direct and inverse methods in nonlinear evolution equations, Lecture Notes in Phys., 632, Springer, Berlin, 2003, 85–136, arXiv: nlin.SI/0002009 | DOI | MR | Zbl

[17] Nakamura A., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, arXiv: 1505.00885

[18] Shimomura S., “A certain expression of the first Painlevé hierarchy”, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 105–109 | DOI | MR | Zbl