@article{SIGMA_2017_13_a22,
author = {Arlo Caine and Berit Nilsen Givens},
title = {On {Toric} {Poisson} {Structures} of {Type} $(1,1)$ and their {Cohomology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/}
}
Arlo Caine; Berit Nilsen Givens. On Toric Poisson Structures of Type $(1,1)$ and their Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/
[1] Caine A., “Toric Poisson structures”, Mosc. Math. J., 11 (2011), 205–229, arXiv: 0910.0229 | MR | Zbl
[2] Goto R., “Unobstructed deformations of generalized complex structures induced by $C^\infty$ logarithmic symplectic structures and logarithmic Poisson structures”, Geometry and Topology of Manifolds, Springer Proc. Math. Stat., 154, Springer, Tokyo, 2016, 159–183, arXiv: 1501.03398 | DOI | MR | Zbl
[3] Liu Z. J., Xu P., “On quadratic Poisson structures”, Lett. Math. Phys., 26 (1992), 33–42 | DOI | MR | Zbl
[4] Lu J.-H., “Momentum mappings and reduction of Poisson actions”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 209–226 | DOI | MR
[5] Monnier P., “Formal Poisson cohomology of quadratic Poisson structures”, Lett. Math. Phys., 59 (2002), 253–267 | DOI | MR | Zbl
[6] Monnier P., “Poisson cohomology in dimension two”, Israel J. Math., 129 (2002), 189–207 | DOI | MR | Zbl
[7] Nakanishi N., “Poisson cohomology of plane quadratic Poisson structures”, Publ. Res. Inst. Math. Sci., 33 (1997), 73–89 | DOI | MR | Zbl
[8] Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl