On Toric Poisson Structures of Type $(1,1)$ and their Cohomology
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify real Poisson structures on complex toric manifolds of type $(1,1)$ and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts determined by the open cones of the associated simplicial fan. As an approximation to the smooth cohomology problem in each ${\mathbb C}^n$ chart, we consider the Poisson differential on the complex of polynomial multi-vector fields. For the algebraic problem, we compute $H^0$ and $H^1$ under the assumption that the Poisson structure is generically non-degenerate. The paper concludes with numerical investigations of the higher degree cohomology groups of $({\mathbb C}^2,\pi_B)$ for various $B$.
Keywords: toric; Poisson structures; group-valued momentum map; Poisson cohomology.
@article{SIGMA_2017_13_a22,
     author = {Arlo Caine and Berit Nilsen Givens},
     title = {On {Toric} {Poisson} {Structures} of {Type} $(1,1)$ and their {Cohomology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/}
}
TY  - JOUR
AU  - Arlo Caine
AU  - Berit Nilsen Givens
TI  - On Toric Poisson Structures of Type $(1,1)$ and their Cohomology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/
LA  - en
ID  - SIGMA_2017_13_a22
ER  - 
%0 Journal Article
%A Arlo Caine
%A Berit Nilsen Givens
%T On Toric Poisson Structures of Type $(1,1)$ and their Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/
%G en
%F SIGMA_2017_13_a22
Arlo Caine; Berit Nilsen Givens. On Toric Poisson Structures of Type $(1,1)$ and their Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a22/

[1] Caine A., “Toric Poisson structures”, Mosc. Math. J., 11 (2011), 205–229, arXiv: 0910.0229 | MR | Zbl

[2] Goto R., “Unobstructed deformations of generalized complex structures induced by $C^\infty$ logarithmic symplectic structures and logarithmic Poisson structures”, Geometry and Topology of Manifolds, Springer Proc. Math. Stat., 154, Springer, Tokyo, 2016, 159–183, arXiv: 1501.03398 | DOI | MR | Zbl

[3] Liu Z. J., Xu P., “On quadratic Poisson structures”, Lett. Math. Phys., 26 (1992), 33–42 | DOI | MR | Zbl

[4] Lu J.-H., “Momentum mappings and reduction of Poisson actions”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 209–226 | DOI | MR

[5] Monnier P., “Formal Poisson cohomology of quadratic Poisson structures”, Lett. Math. Phys., 59 (2002), 253–267 | DOI | MR | Zbl

[6] Monnier P., “Poisson cohomology in dimension two”, Israel J. Math., 129 (2002), 189–207 | DOI | MR | Zbl

[7] Nakanishi N., “Poisson cohomology of plane quadratic Poisson structures”, Publ. Res. Inst. Math. Sci., 33 (1997), 73–89 | DOI | MR | Zbl

[8] Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl