Central Configurations and Mutual Differences
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Central configurations are solutions of the equations $\lambda m_j\mathbf{q}_j = \frac{\partial U}{\partial \mathbf{q}_j}$, where $U$ denotes the potential function and each $\mathbf{q}_j$ is a point in the $d$-dimensional Euclidean space $E\cong \mathbb{R}^d$, for $j=1,\ldots, n$. We show that the vector of the mutual differences $\mathbf{q}_{ij} = \mathbf{q}_i - \mathbf{q}_j$ satisfies the equation $-\frac{\lambda}{\alpha} \mathbf{q} = P_m(\Psi(\mathbf{q}))$, where $P_m$ is the orthogonal projection over the spaces of $1$-cocycles and $\Psi(\mathbf{q}) = \frac{\mathbf{q}}{|\mathbf{q}|^{\alpha+2}}$. It is shown that differences $\mathbf{q}_{ij}$ of central configurations are critical points of an analogue of $U$, defined on the space of $1$-cochains in the Euclidean space $E$, and restricted to the subspace of $1$-cocycles. Some generalizations of well known facts follow almost immediately from this approach.
Keywords: central configurations; relative equilibria; $n$-body problem.
@article{SIGMA_2017_13_a20,
     author = {D. L. Ferrario},
     title = {Central {Configurations} and {Mutual} {Differences}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a20/}
}
TY  - JOUR
AU  - D. L. Ferrario
TI  - Central Configurations and Mutual Differences
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a20/
LA  - en
ID  - SIGMA_2017_13_a20
ER  - 
%0 Journal Article
%A D. L. Ferrario
%T Central Configurations and Mutual Differences
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a20/
%G en
%F SIGMA_2017_13_a20
D. L. Ferrario. Central Configurations and Mutual Differences. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a20/

[1] Albouy A., Open problem 1: are Palmore's “ignored estimates” on the number of planar central configurations correct?, Qual. Theory Dyn. Syst., 14 (2015), 403–406, arXiv: 1501.00694 | DOI | MR | Zbl

[2] Albouy A., Chenciner A., “Le problème des $n$ corps et les distances mutuelles”, Invent. Math., 131 (1998), 151–184 | DOI | MR | Zbl

[3] Albouy A., Kaloshin V., “Finiteness of central configurations of five bodies in the plane”, Ann. of Math., 176 (2012), 535–588 | DOI | MR | Zbl

[4] Fadell E. R., Husseini S. Y., Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[5] Fayçal N., “On the classification of pyramidal central configurations”, Proc. Amer. Math. Soc., 124 (1996), 249–258 | DOI | MR | Zbl

[6] Ferrario D. L., “Planar central configurations as fixed points”, J. Fixed Point Theory Appl., 2 (2007), 277–291 | DOI | MR | Zbl

[7] Ferrario D. L., “Fixed point indices of central configurations”, J. Fixed Point Theory Appl., 17 (2015), 239–251, arXiv: 1412.5817 | DOI | MR | Zbl

[8] Hampton M., Moeckel R., “Finiteness of relative equilibria of the four-body problem”, Invent. Math., 163 (2006), 289–312 | DOI | MR | Zbl

[9] Iturriaga R., Maderna E., “Generic uniqueness of the minimal Moulton central configuration”, Celestial Mech. Dynam. Astronom., 123 (2015), 351–361, arXiv: 1406.6887 | DOI | MR | Zbl

[10] Lang S., Fundamentals of differential geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[11] MacMillan W. D., Bartky W., “Permanent configurations in the problem of four bodies”, Trans. Amer. Math. Soc., 34 (1932), 838–875 | DOI | MR

[12] Moeckel R., “Relative equilibria of the four-body problem”, Ergodic Theory Dynam. Systems, 5 (1985), 417–435 | DOI | MR | Zbl

[13] Moeckel R., “On central configurations”, Math. Z., 205 (1990), 499–517 | DOI | MR | Zbl

[14] Moeckel R., “Central configurations”, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, 105–167 | DOI | MR

[15] Moeckel R., Montgomery R., “Symmetric regularization, reduction and blow-up of the planar three-body problem”, Pacific J. Math., 262 (2013), 129–189, arXiv: 1202.0972 | DOI | MR | Zbl

[16] Ouyang T., Xie Z., Zhang S., “Pyramidal central configurations and perverse solutions”, Electron. J. Differential Equations, 106 (2004), 9 pp. | MR | Zbl

[17] Xia Z., “Convex central configurations for the $n$-body problem”, J. Differential Equations, 200 (2004), 185–190 | DOI | MR | Zbl