Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the ‘holes’ in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions originating from multiple Darboux transformations. For the ease of applications, two different forms of simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The parity transformation property of the multi-indexed Jacobi polynomials is derived based on that of the Jacobi polynomial.
Keywords: multi-indexed orthogonal polynomials; Laguerre and Jacobi polynomials; Wronskian formula; determinant formula.
@article{SIGMA_2017_13_a19,
     author = {Satoru Odake and Ryu Sasaki},
     title = {Simplified {Expressions} of the {Multi-Indexed} {Laguerre} and {Jacobi} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a19/}
}
TY  - JOUR
AU  - Satoru Odake
AU  - Ryu Sasaki
TI  - Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a19/
LA  - en
ID  - SIGMA_2017_13_a19
ER  - 
%0 Journal Article
%A Satoru Odake
%A Ryu Sasaki
%T Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a19/
%G en
%F SIGMA_2017_13_a19
Satoru Odake; Ryu Sasaki. Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a19/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[2] Bagchi B., Quesne C., Roychoudhury R., “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of ${\mathcal{PT}}$ symmetry”, Pramana J. Phys., 73 (2009), 337–347, arXiv: 0812.1488 | DOI | MR

[3] Bochner S., “Über Sturm–Liouvillesche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR | Zbl

[4] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127, arXiv: physics/9908019 | DOI | MR

[5] Darboux G., “Sur une proposition relative aux équations linéaires”, Comptes Rendus Acad. Sci., 94 (1882), 1456–1459

[6] Durán A. J., “Exceptional Meixner and Laguerre orthogonal polynomials”, J. Approx. Theory, 184 (2014), 176–208, arXiv: 1310.4658 | DOI | MR | Zbl

[7] Durán A. J., “Exceptional Hahn and Jacobi orthogonal polynomials”, J. Approx. Theory, 214 (2017), 9–48, arXiv: 1510.02579 | DOI | MR | Zbl

[8] Durán A. J., Pérez M., “Admissibility condition for exceptional Laguerre polynomials”, J. Math. Anal. Appl., 424 (2015), 1042–1053, arXiv: 1409.4901 | DOI | MR | Zbl

[9] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0807.3939 | DOI | MR | Zbl

[10] Gómez-Ullate D., Kamran N., Milson R., “An extension of Bochner's problem: exceptional invariant subspaces”, J. Approx. Theory, 162 (2010), 987–1006, arXiv: 0805.3376 | DOI | MR | Zbl

[11] Gómez-Ullate D., Kamran N., Milson R., “Two-step Darboux transformations and exceptional Laguerre polynomials”, J. Math. Anal. Appl., 387 (2012), 410–418, arXiv: 1103.5724 | DOI | MR | Zbl

[12] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[13] Odake S., New determinant expressions of the multi-indexed orthogonal polynomials in discrete quantum mechanics, arXiv: 1702.03078

[14] Odake S., “Recurrence relations of the multi-indexed orthogonal polynomials. III”, J. Math. Phys., 57 (2016), 023514, 24 pp., arXiv: 1509.08213 | DOI | MR | Zbl

[15] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417, arXiv: 0906.0142 | DOI | MR

[16] Odake S., Sasaki R., “Discrete quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 353001, 47 pp., arXiv: 1104.0473 | DOI | MR | Zbl

[17] Odake S., Sasaki R., “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials”, Phys. Lett. B, 702 (2011), 164–170, arXiv: 1105.0508 | DOI | MR

[18] Odake S., Sasaki R., “Multi-indexed ($q$-)Racah polynomials”, J. Phys. A: Math. Theor., 45 (2012), 385201, 21 pp., arXiv: 1203.5868 | DOI | MR | Zbl

[19] Odake S., Sasaki R., “Multi-indexed Wilson and Askey–Wilson polynomials”, J. Phys. A: Math. Theor., 46 (2013), 045204, 22 pp., arXiv: 1207.5584 | DOI | MR | Zbl

[20] Odake S., Sasaki R., “Krein–Adler transformations for shape-invariant potentials and pseudo virtual states”, J. Phys. A: Math. Theor., 46 (2013), 245201, 24 pp., arXiv: 1212.6595 | DOI | MR | Zbl

[21] Odake S., Sasaki R., “Multi-indexed Meixner and little $q$-Jacobi (Laguerre) polynomials”, J. Phys. A: Math. Theor., 50 (2017), 165204, 23 pp., arXiv: 1610.09854 | DOI

[22] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp., arXiv: 0807.4087 | DOI | MR | Zbl

[23] Routh E. J., “On some properties of certain solutions of a differential equation of the second order”, Proc. London Math. Soc., S1-16 (1884), 245–261 | DOI | MR

[24] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR