Lagrangian Mechanics and Reductionon Fibered Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper develops a generalized formulation of Lagrangian mechanics on fibered manifolds, together with a reduction theory for symmetries corresponding to Lie groupoid actions. As special cases, this theory includes not only Lagrangian reduction (including reduction by stages) for Lie group actions, but also classical Routh reduction, which we show is naturally posed in this fibered setting. Along the way, we also develop some new results for Lagrangian mechanics on Lie algebroids, most notably a new, coordinate-free formulation of the equations of motion. Finally, we extend the foregoing to include fibered and Lie algebroid generalizations of the Hamilton–Pontryagin principle of Yoshimura and Marsden, along with the associated reduction theory.
Keywords: Lagrangian mechanics; reduction; fibered manifolds; Lie algebroids; Lie groupoids.
@article{SIGMA_2017_13_a18,
     author = {Songhao Li and Ari Stern and Xiang Tang},
     title = {Lagrangian {Mechanics} and {Reductionon} {Fibered} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a18/}
}
TY  - JOUR
AU  - Songhao Li
AU  - Ari Stern
AU  - Xiang Tang
TI  - Lagrangian Mechanics and Reductionon Fibered Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a18/
LA  - en
ID  - SIGMA_2017_13_a18
ER  - 
%0 Journal Article
%A Songhao Li
%A Ari Stern
%A Xiang Tang
%T Lagrangian Mechanics and Reductionon Fibered Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a18/
%G en
%F SIGMA_2017_13_a18
Songhao Li; Ari Stern; Xiang Tang. Lagrangian Mechanics and Reductionon Fibered Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a18/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Dynamical systems. III, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 1988 | DOI | MR

[2] Bou-Rabee N., Marsden J. E., “Hamilton–Pontryagin integrators on Lie groups. I. Introduction and structure-preserving properties”, Found. Comput. Math., 9 (2009), 197–219 | DOI | MR | Zbl

[3] Cendra H., Marsden J. E., Ratiu T. S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, 2001, x+108 pp. | DOI | MR

[4] Cortés J., de León M., Marrero J. C., Martín de Diego D., Martínez E., “A survey of Lagrangian mechanics and control on Lie algebroids and groupoids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509–558, arXiv: math-ph/0511009 | DOI | MR | Zbl

[5] Cortés J., Martínez E., “Mechanical control systems on Lie algebroids”, IMA J. Math. Control Inform., 21 (2004), 457–492, arXiv: math.OC/0402437 | DOI | MR | Zbl

[6] Crainic M., Fernandes R. L., “Integrability of Lie brackets”, Ann. of Math., 157 (2003), 575–620, arXiv: math.DG/0105033 | DOI | MR | Zbl

[7] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308, arXiv: math.DG/0407528 | DOI | MR | Zbl

[8] Dufour J.-P., Zung N. T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl

[9] Grabowska K., Grabowski J., “Variational calculus with constraints on general algebroids”, J. Phys. A: Math. Theor., 41 (2008), 175204, 25 pp., arXiv: 0712.2766 | DOI | MR | Zbl

[10] Grabowska K., Urbański P., Grabowski J., “Geometrical mechanics on algebroids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559–575, arXiv: math-ph/0509063 | DOI | MR

[11] Higgins P. J., Mackenzie K. C. H., “Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures”, Math. Proc. Cambridge Philos. Soc., 114 (1993), 471–488 | DOI | MR | Zbl

[12] Iglesias D., Marrero J. C., Martín de Diego D., Martínez E., “Discrete nonholonomic Lagrangian systems on Lie groupoids”, J. Nonlinear Sci., 18 (2008), 221–276, arXiv: 0704.1543 | DOI | MR | Zbl

[13] Iglesias D., Marrero J. C., Martín de Diego D., Sosa D., “Singular Lagrangian systems and variational constrained mechanics on Lie algebroids”, Dyn. Syst., 23 (2008), 351–397, arXiv: 0706.2789 | DOI | MR | Zbl

[14] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[15] Marrero J. C., Martín de Diego D., Martínez E., “Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids”, Nonlinearity, 19 (2006), 1313–1348, arXiv: math.DG/0506299 | DOI | MR | Zbl

[16] Marrero J. C., Martín de Diego D., Stern A., “Symplectic groupoids and discrete constrained Lagrangian mechanics”, Discrete Contin. Dyn. Syst., 35 (2015), 367–397, arXiv: 1103.6250 | DOI | MR | Zbl

[17] Marsden J. E., Misiołek G., Ortega J. P., Perlmutter M., Ratiu T. S., Hamiltonian reduction by stages, Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007 | DOI | MR | Zbl

[18] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[19] Marsden J. E., Ratiu T. S., Scheurle J., “Reduction theory and the Lagrange–Routh equations”, J. Math. Phys., 41 (2000), 3379–3429 | DOI | MR | Zbl

[20] Marsden J. E., Scheurle J., “Lagrangian reduction and the double spherical pendulum”, Z. Angew. Math. Phys., 44 (1993), 17–43 | DOI | MR | Zbl

[21] Marsden J. E., Scheurle J., “The reduced Euler–Lagrange equations”, Dynamics and Control of Mechanical Systems (Waterloo, ON, 1992), Fields Inst. Commun., 1, Amer. Math. Soc., Providence, RI, 1993, 139–164 | MR | Zbl

[22] Marsden J. E., West M., “Discrete mechanics and variational integrators”, Acta Numer., 10 (2001), 357–514 | DOI | MR | Zbl

[23] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl

[24] Martínez E., “Lie algebroids in classical mechanics and optimal control”, SIGMA, 3 (2007), 050, 17 pp., arXiv: math-ph/0703062 | DOI | MR | Zbl

[25] Martínez E., “Variational calculus on Lie algebroids”, ESAIM Control Optim. Calc. Var., 14 (2008), 356–380, arXiv: math-ph/0603028 | DOI | MR | Zbl

[26] Montgomery R., “Isoholonomic problems and some applications”, Comm. Math. Phys., 128 (1990), 565–592 | DOI | MR | Zbl

[27] Moser J., Veselov A. P., “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139 (1991), 217–243 | DOI | MR | Zbl

[28] Routh E. J., An elementary treatise on the dynamics of a system of rigid bodies. With numerous examples, Macmillan, Cambridge, 1860 | MR

[29] Stern A., “Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoids”, J. Symplectic Geom., 8 (2010), 225–238, arXiv: 0905.4318 | DOI | MR | Zbl

[30] Weinstein A., “Lagrangian mechanics and groupoids”, Mechanics Day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996, 207–231 | MR | Zbl

[31] Wong S. K., “Field and particle equations for the classical Yang–Mills field and particles with isotopic spin”, Il Nuovo Cimento A, 65 (1970), 689–694 | DOI

[32] Yoshimura H., Marsden J. E., “Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems”, J. Geom. Phys., 57 (2006), 133–156 | DOI | MR | Zbl

[33] Yoshimura H., Marsden J. E., “Dirac structures in Lagrangian mechanics. II. Variational structures”, J. Geom. Phys., 57 (2006), 209–250 | DOI | MR | Zbl

[34] Yoshimura H., Marsden J. E., “Reduction of Dirac structures and the Hamilton–Pontryagin principle”, Rep. Math. Phys., 60 (2007), 381–426 | DOI | MR | Zbl