@article{SIGMA_2017_13_a16,
author = {Joe Suzuki},
title = {Klein's {Fundamental} $2${-Form} of {Second} {Kind} for the $C_{ab}$ {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a16/}
}
Joe Suzuki. Klein's Fundamental $2$-Form of Second Kind for the $C_{ab}$ Curves. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a16/
[1] Ayano T., Sigma functions for telescopic curves, Ph.D. Thesis, Osaka University, 2013 | MR
[2] Baker H. F., Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[3] Buchstaber V. M., Enolski V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33, arXiv: solv-int/9603005 | MR
[4] Buchstaber V. M., Enolski V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. and Math. Phys., 10:2 (1997), 1–125 | MR
[5] Buchstaber V. M., Enolski V. Z., Leykin D. V., “Rational analogues of abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl
[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations”, Funct. Anal. Appl., 34 (2000), 159–171 | DOI | MR | Zbl
[7] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-dimensional sigma-functions, arXiv: 1208.0990
[8] Buchstaber V. M., Leykin D. V., “Addition laws on Jacobians of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[9] Cassels J. W.S., Flynn E. V., Prolegomena to a middlebrow arithmetic of curves of genus $2$, London Mathematical Society Lecture Note Series, 230, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[10] Eilbeck J. C., Enolski V. Z., Matsutani S., Ônishi Y., Previato E., “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not., 2008 (2008), rnm 140, 38 pp., arXiv: math.AG/0610019 | DOI | MR
[11] Eilbeck J. C., Enolskii V. Z., Leykin D. V., “On the Kleinian construction of abelian functions of canonical algebraic curves”, SIDE III – Aymmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 121–138 | MR | Zbl
[12] England M., Eilbeck J. C., “Abelian functions associated with a cyclic tetragonal curve of genus six”, J. Phys. A: Math. Theor., 42 (2009), 095210, 27 pp., arXiv: 0806.2377 | DOI | MR | Zbl
[13] Galbraith S. D., Paulus S. M., Smart N. P., “Arithmetic on superelliptic curves”, Math. Comp., 71 (2002), 393–405 | DOI | MR | Zbl
[14] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27 (1886), 431–464 | DOI | MR
[15] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32 (1888), 351–380 | DOI | MR
[16] Miura S., Error-correcting codes based on algebraic geometry, Ph.D. Thesis, University of Tokyo, 1998
[17] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR
[18] Suzuki J., “Miura conjecture on affine curves”, Osaka J. Math., 44 (2007), 187–196 | MR | Zbl