@article{SIGMA_2017_13_a14,
author = {Jan Fuksa},
title = {Bethe {Vectors} for {Composite} {Models} with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ {Supersymmetry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a14/}
}
TY - JOUR
AU - Jan Fuksa
TI - Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry
JO - Symmetry, integrability and geometry: methods and applications
PY - 2017
VL - 13
UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a14/
LA - en
ID - SIGMA_2017_13_a14
ER -
Jan Fuksa. Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a14/
[1] Babujian H., Karowski M., Zapletal A., “Matrix difference equations and a nested Bethe ansatz”, J. Phys. A: Math. Gen., 30 (1997), 6425–6450 | DOI | MR | Zbl
[2] Bedürftig G., Frahm H., “Thermodynamics of an integrable model for electrons with correlated hopping”, J. Phys. A: Math. Gen., 28 (1995), 4453–4468, arXiv: cond-mat/9504103 | DOI | MR | Zbl
[3] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of ${\rm GL}(3)$-invariant integrable models,”, J. Stat. Mech. Theory Exp., 2013 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR
[4] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of quantum integrable models with ${\rm GL}(3)$ trigonometric $R$-matrix”, SIGMA, 9 (2013), 058, 23 pp., arXiv: 1304.7602 | DOI | MR | Zbl
[5] Bracken A. J., Gould M. D., Links J. R., Zhang Y. Z., “New supersymmetric and exactly solvable model of correlated electrons”, Phys. Rev. Lett., 74 (1995), 2768–2771, arXiv: cond-mat/9410026 | DOI
[6] Faddeev L. D., “How the algebraic Bethe ansatz works for integrable models”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl
[7] Foerster A., Links J., Tonel A. P., “Algebraic properties of an integrable $t$-$J$ model with impurities”, Nuclear Phys. B, 552 (1999), 707–726, arXiv: cond-mat/9901091 | DOI | MR | Zbl
[8] Frahm H., “Doped Heisenberg chains: spin-$S$ generalizations of the supersymmetric $t$-$J$ model”, Nuclear Phys. B, 559 (1999), 613–636, arXiv: cond-mat/9904157 | DOI | MR | Zbl
[9] Fuksa J., Slavnov N. A., Form factors of local operators in supersymmetric quantum integrable models, arXiv: 1701.05866
[10] Göhmann F., Korepin V. E., “Solution of the quantum inverse problem”, J. Phys. A: Math. Gen., 33 (2000), 1199–1220, arXiv: hep-th/9910253 | DOI | MR | Zbl
[11] Hutsalyuk A., Liashyk A., Pakuliak S. Z., Ragoucy E., Slavnov N. A., “Form factors of the monodromy matrix entries in ${\mathfrak{gl}}(2|1)$-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927, arXiv: 1607.04978 | DOI | MR | Zbl
[12] Hutsalyuk A., Liashyk A., Pakuliak S. Z., Ragoucy E., Slavnov N. A., “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp., arXiv: 1605.06419 | DOI | MR | Zbl
[13] Hutsalyuk A., Liashyk A., Pakuliak S. Z., Ragoucy E., Slavnov N. A., “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A: Math. Theor., 49 (2016), 454005, 28 pp., arXiv: 1605.09189 | DOI | MR | Zbl
[14] Hutsalyuk A., Liashyk A., Pakuliak S. Z., Ragoucy E., Slavnov N. A., “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A: Math. Theor., 50 (2017), 034004, 22 pp., arXiv: 1606.03573 | DOI | MR | Zbl
[15] Izergin A. G., “Partition function of a six-vertex model in a finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[16] Izergin A. G., Korepin V. E., “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl
[17] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48 (2008), 277–321, arXiv: 0711.2819 | DOI | MR | Zbl
[18] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-${1\over2}$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[19] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[20] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl
[21] Kulish P. P., Reshetikhin N. Y., “Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16 (1983), L591–L596 | DOI | MR | Zbl
[22] Kulish P. P., Sklyanin E. K., “Solutions of the Yang–Baxter equation”, J. Sov. Math., 19 (1982), 1596–1620 | DOI | Zbl
[23] Maillet J. M., Terras V., “On the quantum inverse scattering problem”, Nuclear Phys. B, 575 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl
[24] Pakuliak S., Ragoucy E., Slavnov N. A., “${\rm GL}(3)$-based quantum integrable composite models. I. Bethe vectors”, SIGMA, 11 (2015), 063, 20 pp., arXiv: 1501.07566 | DOI | MR | Zbl
[25] Pakuliak S., Ragoucy E., Slavnov N. A., “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481, arXiv: 1412.6037 | DOI | MR | Zbl
[26] Pakuliak S., Ragoucy E., Slavnov N. A., Bethe vectors for models based on the super-Yangian $Y(\mathfrak{gl}(m|n))$, arXiv: 1604.02311
[27] Pfannmüller M. P., Frahm H., “Algebraic Bethe ansatz for ${\mathfrak{gl}}(2,1)$ invariant $36$-vertex models”, Nuclear Phys. B, 479 (1996), 575–593, arXiv: cond-mat/9604082 | DOI | MR | Zbl
[28] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR
[29] Slavnov N. A., “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62 (2007), 727–766 | DOI | MR | Zbl
[30] Sutherland B., “Further results for the many-body problem in one dimension”, Phys. Rev. Lett., 20 (1968), 98–100 | DOI
[31] Takhtadzhyan L. A., Faddeev L. D., “The quantum method for the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[32] Varchenko A., Tarasov V., “Jackson integral representations of solutions of the quantized Knizhnik–Zamolodchikov equation”, St. Petersburg Math. J., 6 (1995), 275–313, arXiv: hep-th/9311040 | MR
[33] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl