@article{SIGMA_2017_13_a11,
author = {Chaiho Rim},
title = {Irregular {Conformal} {States} and {Spectral} {Curve:} {Irregular} {Matrix} {Model} {Approach}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a11/}
}
Chaiho Rim. Irregular Conformal States and Spectral Curve: Irregular Matrix Model Approach. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a11/
[1] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[2] Argyres P. C., Douglas M. R., “New phenomena in ${\rm SU}(3)$ supersymmetric gauge theory”, Nuclear Phys. B, 448 (1995), 93–126, arXiv: hep-th/9505062 | DOI | MR | Zbl
[3] Belavin V., Feigin B., “Super Liouville conformal blocks from ${\mathcal N}=2$ ${\rm SU}(2)$ quiver gauge theories”, J. High Energy Phys., 2011:7 (2011), 079, 17 pp., arXiv: 1105.5800 | DOI | MR | Zbl
[4] Bonelli G., Maruyoshi K., Tanzini A., Quantum Hitchin systems via $\beta$-deformed matrix models, arXiv: 1104.4016
[5] Bonelli G., Maruyoshi K., Tanzini A., “Gauge theories on ALE space and super Liouville correlation functions”, Lett. Math. Phys., 101 (2012), 103–124, arXiv: 1107.4609 | DOI | MR | Zbl
[6] Bonelli G., Maruyoshi K., Tanzini A., “Wild quiver gauge theories”, J. High Energy Phys., 2012:2 (2012), 031, 31 pp., arXiv: 1112.1691 | DOI | MR | Zbl
[7] Chekhov L. O., Logarithmic potential beta-ensembles and Feynman graphs, arXiv: 1009.5940
[8] Chekhov L. O., Eynard B., Marchal O., “Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach”, Theoret. and Math. Phys., 166 (2011), 141–185, arXiv: 1009.6007 | DOI | MR | Zbl
[9] Choi S. K., Rim C., “Parametric dependence of irregular conformal block”, J. High Energy Phys., 2014:4 (2014), 106, 30 pp., arXiv: 1312.5535 | DOI | MR
[10] Choi S. K., Rim C., “Irregular matrix model with $\mathcal W$ symmetry”, J. Phys. A: Math. Theor., 49 (2016), 075201, 15 pp., arXiv: 1506.02421 | DOI | Zbl
[11] Choi S. K., Rim C., Zhang H., “Virasoro irregular conformal block and beta deformed random matrix model”, Phys. Lett. B, 742 (2015), 50–54, arXiv: 1411.4453 | DOI | Zbl
[12] Choi S. K., Rim C., Zhang H., “Irregular conformal block, spectral curve and flow equations”, J. High Energy Phys., 2016:3 (2016), 118, 41 pp., arXiv: 1510.09060 | DOI | Zbl
[13] Ciosmak P., Hadasz L., Manabe M., Sułkowski P., “Super-quantum curves from super-eigenvalue models”, J. High Energy Phys., 2016:10 (2016), 044, 56 pp., arXiv: 1608.02596 | DOI | MR
[14] Dijkgraaf R., Vafa C., “On geometry and matrix models”, Nuclear Phys. B, 644 (2002), 21–39, arXiv: hep-th/0207106 | DOI | MR | Zbl
[15] Dijkgraaf R., Vafa C., Toda Theories, matrix models, topological strings, and ${\mathcal N}=2$ gauge systems, arXiv: 0909.2453
[16] Eguchi T., Maruyoshi K., “Penner type matrix model and Seiberg–Witten theory”, J. High Energy Phys., 2010:2 (2010), 022, 21 pp., arXiv: 0911.4797 | DOI | MR | Zbl
[17] Felińska E., Jaskólski Z., Kosztołowicz M., “Whittaker pairs for the Virasoro algebra and the Gaiotto–Bonelli–Maruyoshi–Tanzini states”, J. Math. Phys., 53 (2012), 033504, 16 pp., arXiv: 1112.4453 | DOI | MR | Zbl
[18] Gaiotto D., “Asymptotically free ${\mathcal N}=2$ theories and irregular conformal blocks”, J. Phys. Conf. Ser., 462 (2013), 012014, 5 pp., arXiv: 0908.0307 | DOI
[19] Gaiotto D., Teschner J., “Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories”, J. High Energy Phys., 2012:12 (2012), 050, 79 pp., arXiv: 1203.1052 | DOI | MR
[20] Gomis J., Le Floch B., “M2-brane surface operators and gauge theory dualities in Toda”, J. High Energy Phys., 2016:4 (2016), 183, 111 pp., arXiv: 1407.1852 | DOI | MR
[21] Itoyama H., Oota T., “Method of generating $q$-expansion coefficients for conformal block and ${\mathcal N}=2$ Nekrasov function by $\beta$-deformed matrix model”, Nuclear Phys. B, 838 (2010), 298–330, arXiv: 1003.2929 | DOI | MR | Zbl
[22] Kanno H., Maruyoshi K., Shiba S., Taki M., “${\mathcal W}_3$ irregular states and isolated ${\mathcal N}=2$ superconformal field theories”, J. High Energy Phys., 2013:3 (2013), 147, 51 pp., arXiv: 1301.0721 | DOI | MR | Zbl
[23] Litvinov A., Lukyanov S., Nekrasov N., Zamolodchikov A., “Classical conformal blocks and Painlevé VI”, J. High Energy Phys., 2014:7 (2014), 144, 20 pp., arXiv: 1309.4700 | DOI | MR | Zbl
[24] Manabe M., Sułkowski P., Quantum curves and conformal field theory, arXiv: 1512.05785
[25] Marshakov A., Mironov A., Morosov A., “On AGT relations with surface operator insertion and a stationary limit of beta-ensembles”, J. Geom. Phys., 61 (2011), 1203–1222, arXiv: 1011.4491 | DOI | MR | Zbl
[26] Marshakov A., Mironov A., Morozov A., “On non-conformal limit of the AGT relations”, Phys. Lett. B, 682 (2009), 125–129, arXiv: 0909.2052 | DOI | MR
[27] Nagoya H., Sun J., “Confluent primary fields in the conformal field theory”, J. Phys. A: Math. Theor., 43 (2010), 465203, 13 pp., arXiv: 1002.2598 | DOI | MR | Zbl
[28] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl
[29] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | Zbl
[30] Nishinaka T., Rim C., “Matrix models for irregular conformal blocks and Argyres–Douglas theories”, J. High Energy Phys., 2012:10 (2012), 138, 36 pp., arXiv: 1207.4480 | DOI | MR
[31] Piatek M., Pietrykowski A. R., “Classical irregular blocks, Hill's equation and PT-symmetric periodic complex potentials”, J. High Energy Phys., 2016:7 (2016), 131, 24 pp., arXiv: 1407.0305 | DOI | MR
[32] Polyakov D., Rim C., “Irregular vertex operators for irregular conformal blocks”, Phys. Rev. D, 93 (2016), 106002, 10 pp., arXiv: 1601.07756 | DOI
[33] Polyakov D., Rim C., “Super-spectral curve of irregular conformal blocks”, J. High Energy Phys., 2016:12 (2016), 004, 17 pp., arXiv: 1604.08741 | DOI
[34] Polyakov D., Rim C., “Vertex operators for irregular conformal blocks: supersymmetric case”, Phys. Rev. D, 94 (2016), 086011, 5 pp., arXiv: 1604.08741 | DOI
[35] Rashkov R. C., Stanishkov M., “Three-point correlation functions in $N=1$ super Liouville theory”, Phys. Lett. B, 380 (1996), 49–58, arXiv: hep-th/9602148 | DOI | MR
[36] Rim C., Zhang H., “Classical Virasoro irregular conformal block”, J. High Energy Phys., 2015:7 (2015), 163, 19 pp., arXiv: 1504.07910 | DOI | MR
[37] Rim C., Zhang H., “Classical Virasoro irregular conformal block II”, J. High Energy Phys., 2015:9 (2015), 097, 14 pp., arXiv: 1506.03561 | DOI | MR
[38] Wyllard N., “$A_{N-1}$ conformal Toda field theory correlation functions from conformal ${\mathcal N}=2$ ${\rm SU}(N)$ quiver gauge theories”, J. High Energy Phys., 2009:11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR