@article{SIGMA_2017_13_a10,
author = {Samuel Belliard and Vidas Regelskis},
title = {Drinfeld {J} {Presentation} of {Twisted} {Yangians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a10/}
}
Samuel Belliard; Vidas Regelskis. Drinfeld J Presentation of Twisted Yangians. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a10/
[1] Araki S., “On root systems and an infinitesimal classification of irreducible symmetric spaces”, J. Math. Osaka City Univ., 13 (1962), 1–34 | MR | Zbl
[2] Arnaudon D., Avan J., Crampé N., Doikou A., Frappat L., Ragoucy E., “General boundary conditions for the $sl(N)$ and $sl(M|N)$ open spin chains”, J. Stat. Mech. Theory Exp., 2004 (2004), P08005, 35 pp., arXiv: math-ph/0406021 | DOI | MR | Zbl
[3] Baseilhac P., “Deformed Dolan–Grady relations in quantum integrable models”, Nuclear Phys. B, 709 (2005), 491–521, arXiv: hep-th/0404149 | DOI | MR | Zbl
[4] Baseilhac P., “An integrable structure related with tridiagonal algebras”, Nuclear Phys. B, 705 (2005), 605–619, arXiv: math-ph/0408025 | DOI | MR | Zbl
[5] Baseilhac P., Belliard S., “Generalized $q$-Onsager algebras and boundary affine Toda field theories”, Lett. Math. Phys., 93 (2010), 213–228, arXiv: 0906.1215 | DOI | MR | Zbl
[6] Baseilhac P., Belliard S., “The central extension of the reflection equations and an analog of Miki's formula”, J. Phys. A: Math. Theor., 44 (2011), 415205, 13 pp., arXiv: 1104.1591 | DOI | Zbl
[7] Baseilhac P., Belliard S., “The half-infinite XXZ chain in Onsager's approach”, Nuclear Phys. B, 873 (2013), 550–584, arXiv: 1211.6304 | DOI | MR | Zbl
[8] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl
[9] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[10] Belliard S., Crampé N., “Coideal algebras from twisted Manin triples”, J. Geom. Phys., 62 (2012), 2009–2023, arXiv: 1202.2312 | DOI | MR | Zbl
[11] Belliard S., Fomin V., “Generalized $q$-Onsager algebras and dynamical $K$-matrices”, J. Phys. A: Math. Theor., 45 (2012), 025201, 17 pp., arXiv: 1106.1317 | DOI | MR | Zbl
[12] Bonneau P., Flato M., Gerstenhaber M., Pinczon G., “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161 (1994), 125–156 | DOI | MR | Zbl
[13] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[14] Chen H., Guay N., Ma X., “Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type $BC$”, Trans. Amer. Math. Soc., 366 (2014), 2517–2574 | DOI | MR | Zbl
[15] Cherednik I. V., “Factorizing particles on a half line, and root systems”, Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl
[16] Delius G. W., MacKay N. J., Short B. J., “Boundary remnant of Yangian symmetry and the structure of rational reflection matrices”, Phys. Lett. B, 522 (2001), 335–344, arXiv: hep-th/0109115 | DOI | MR | Zbl
[17] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Dokl. Akad. Nauk SSSR, 32 (1985), 254–258 | MR
[18] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[19] Drinfeld V. G., “On some unsolved problems in quantum group theory”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR
[20] Etingof P., Kazhdan D., “Quantization of Lie bialgebras. I”, Selecta Math. (N.S.), 2 (1996), 1–41, arXiv: q-alg/9506005 | DOI | MR | Zbl
[21] Etingof P., Kazhdan D., “Quantization of Poisson algebraic groups and Poisson homogeneous spaces”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 935–946, arXiv: q-alg/9510020 | MR | Zbl
[22] Faddeev L. D., Reshetikhin N. Yu., Ann. Physics, 167 (1986), Integrability of the principal chiral field model in $1+1$ dimension | DOI | MR
[23] Faddeev L. D., Takhtadzhyan L. A., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI | Zbl
[24] Guay N., Regelskis V., “Twisted Yangians for symmetric pairs of types B, C, D”, Math. Z., 284 (2016), 131–166, arXiv: 1407.5247 | DOI | MR | Zbl
[25] Guay N., Regelskis V., Wendlandt C., “Twisted Yangians of small rank”, J. Math. Phys., 57 (2016), 041703, 28 pp., arXiv: 1602.01418 | DOI | MR | Zbl
[26] Guay N., Regelskis V., Wendlandt C., “Representations of twisted Yangians of types B, C, D: I”, Selecta Math. (N.S.) (to appear) , arXiv: 1605.06733 | DOI
[27] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl
[28] Kolb S., “Quantum symmetric Kac–Moody pairs”, Adv. Math., 267 (2014), 395–469, arXiv: 1207.6036 | DOI | MR | Zbl
[29] Koornwinder T. H., “Askey–Wilson polynomials as zonal spherical functions on the ${\rm SU}(2)$ quantum group”, SIAM J. Math. Anal., 24 (1993), 795–813 | DOI | MR | Zbl
[30] Letzter G., “Coideal subalgebras and quantum symmetric pairs”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 117–165, arXiv: math.QA/0103228 | MR | Zbl
[31] Levendorskiĭ S. Z., “On PBW bases for Yangians”, Lett. Math. Phys., 27 (1993), 37–42 | DOI | MR | Zbl
[32] MacKay N. J., “Rational $K$-matrices and representations of twisted Yangians”, J. Phys. A: Math. Gen., 35 (2002), 7865–7876, arXiv: math.QA/0205155 | DOI | MR | Zbl
[33] MacKay N. J., “Introduction to Yangian symmetry in integrable field theory”, Internat. J. Modern Phys. A, 20 (2005), 7189–7217, arXiv: hep-th/0409183 | DOI | MR | Zbl
[34] MacKay N., Regelskis V., “Yangian symmetry of the $Y=0$ maximal giant graviton”, J. High Energy Phys., 2010:12 (2010), 076, 17 pp., arXiv: 1010.3761 | DOI | MR | Zbl
[35] MacKay N., Regelskis V., “Achiral boundaries and the twisted Yangian of the D5-brane”, J. High Energy Phys., 2011:8 (2011), 019, 22 pp., arXiv: 1105.4128 | DOI | MR | Zbl
[36] Molev A. I., “Representations of twisted Yangians”, Lett. Math. Phys., 26 (1992), 211–218 | DOI | MR | Zbl
[37] Molev A. I., “Finite-dimensional irreducible representations of twisted Yangians”, J. Math. Phys., 39 (1998), 5559–5600, arXiv: q-alg/9711022 | DOI | MR | Zbl
[38] Molev A. I., Nazarov M. L., Olshanskii G. I., “Yangians and classical Lie algebras”, Russ. Math. Surv., 51 (1996), 205–282, arXiv: hep-th/9409025 | DOI | MR | Zbl
[39] Molev A. I., Ragoucy E., “Representations of reflection algebras”, Rev. Math. Phys., 14 (2002), 317–342, arXiv: math.QA/0107213 | DOI | MR | Zbl
[40] Molev A. I., Ragoucy E., Sorba P., “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15 (2003), 789–822, arXiv: math.QA/0208140 | DOI | MR | Zbl
[41] Ohayon J., Quantization of coisotropic subalgebras in complex semisimple Lie algebras, arXiv: 1005.1371
[42] Olshanskii G. I., “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 104–119 | DOI | MR
[43] Regelskis V., Reflection algebras for ${\mathfrak{sl}}(2)$ and ${\mathfrak{gl}}(1|1)$, arXiv: 1206.6498
[44] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl
[45] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[46] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR
[47] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl
[48] Zambon M., “A construction for coisotropic subalgebras of Lie bialgebras”, J. Pure Appl. Algebra, 215 (2011), 411–419, arXiv: 0810.5160 | DOI | MR | Zbl