@article{SIGMA_2017_13_a1,
author = {Daniel J. F. Fox},
title = {Symmetries of the {Space} of {Linear} {Symplectic} {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a1/}
}
Daniel J. F. Fox. Symmetries of the Space of Linear Symplectic Connections. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a1/
[1] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[2] Bieliavsky P., Cahen M., Gutt S., Rawnsley J., Schwachhöfer L., “Symplectic connections”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 375–420, arXiv: math.SG/0511194 | DOI | MR | Zbl
[3] Bolsinov A. V., “Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution”, Math. USSR Izv., 38 (1992), 69–90 | DOI | MR
[4] Bolsinov A. V., Borisov A. V., “Compatible Poisson brackets on Lie algebras”, Math. Notes, 72 (2002), 10–30 | DOI | MR | Zbl
[5] Bourgeois F., Cahen M., Can one define a preferred symplectic connection?, Rep. Math. Phys., 43 (1999), 35–42 | DOI | MR | Zbl
[6] Bourgeois F., Cahen M., “A variational principle for symplectic connections”, J. Geom. Phys., 30 (1999), 233–265 | DOI | MR | Zbl
[7] Cahen M., Gutt S., “Moment map for the space of symplectic connections”, Liber Amicorum Delanghe, eds. F. Brackx, H. De Schepper, Gent Academia Press, 2005, 27–36
[8] Fedosov B., Deformation quantization and index theory, Mathematical Topics, 9, Akademie Verlag, Berlin, 1996 | MR | Zbl
[9] Fedosov B., “The Atiyah–Bott–Patodi method in deformation quantization”, Comm. Math. Phys., 209 (2000), 691–728 | DOI | MR | Zbl
[10] Fox D. J. F., Critical symplectic connections on surfaces, arXiv: 1410.1468
[11] Golubchik I. Z., Sokolov V. V., “Compatible Lie brackets and integrable equations of the principal chiral field model type”, Funct. Anal. Appl., 36 (2002), 172–181 | DOI | MR | Zbl
[12] Guillemin V., “The integrability problem for $G$-structures”, Trans. Amer. Math. Soc., 116 (1965), 544–560 | DOI | MR | Zbl
[13] Gutt S., “Remarks on symplectic connections”, Lett. Math. Phys., 78 (2006), 307–328 | DOI | MR | Zbl
[14] Kobayashi S., Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 70, Springer-Verlag, Berlin–Heidelberg, 1995 | DOI | MR
[15] Kostant B., “The Weyl algebra and the structure of all Lie superalgebras of Riemannian type”, Transform. Groups, 6 (2001), 215–226, arXiv: math.RT/0106171 | DOI | MR | Zbl
[16] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995 | MR
[17] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl
[18] Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 | MR | Zbl
[19] Tamarkin D. E., “Topological invariants of connections on symplectic manifolds”, Funct. Anal. Appl., 29 (1995), 258–267 | DOI | MR | Zbl
[20] Wald R. M., General relativity, University of Chicago Press, Chicago, IL, 1984 | DOI | MR | Zbl